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Abstract. In neuroscience it became popular to represent neuroimaging data
from the human brain as networks. The edges of these (weighted) graphs rep-
resent a spatio-temporal similarity between paired data channels. The tem-
poral series of graphs is commonly averaged to a weighted graph of which
edge weights are eventually thresholded. Graph measures are then applied to
this network to correlate them, e.g. with clinical variables. This approach has
some major drawbacks we will discuss in this paper. We identify three limi-
tations of static graphs: selecting a similarity measure, averaging over time,
choosing an (arbitrary) threshold value. The latter two procedures should
not be performed due to the loss of brain activity dynamics. We propose to
work on series of weighted graphs to obtain time series of graph measures.
We use vector autoregressive (VAR) models to facilitate a statistical analy-
sis of the resulting time series. Machine learning techniques are used to find
dependencies between VAR parameters and clinical variables. We conclude
with a discussion and possible ideas for future work.

Keywords: Dynamic networks, elctroencephalography, neuroimaging, re-
gression, vector autoregressive model.

1 Introduction

In the last decade, a new trend in neuroscience emerged which focuses on the
analysis of complex functional brain networks (see e.g. [18]). These networks
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are obtained from neuroimaging data by several technologies, e.g. electroen-
cephalography (EEG), electrocorticography (ECoG), magnetoencephalogra-
phy (MEG) or functional magnetic resonance imaging (fMRI). These methods
record activities of brain regions (e.g. on the skull, on the brain meninges or
inside of the brain). We denote these brain regions as variables. The sampling
rates of the data highly depend on the chosen method (kHz for EEG, MEG
and ECoG, Hz for fMRI).

Whenever two brain regions are co-active, they are connected to each other.
This connection induces a complex brain network that gives some high-level
representation of the really connected nervous cells of the brain. There is
general consensus that the analysis of such brain networks will help to better
understand the functionality of different brain centers and the brain as a
whole [15]. Clearly, if the dynamic behavior of such networks is ignored,
then valuable information will be lost pertaining to the brain networks being
studied.

While it is challenging to even define nodes for brain networks [2], here this
definition is explicitly given by a specific application. We discuss the analysis
of dynamic brain networks obtained from patients’ EEG. The patients from
which we recorded EEGs have visual field deficits (visual impairments) that
resulted from optic nerve damages [21]. Our goal is to find network features
that correlate with clinically relevant variables. Since we deal with (partly)
blind subjects, we assume that it has an effect on their functional connectivity
networks. We also hypothesis that there is a correspondence between the
extend of the vision loss and the dynamics of the brain connectivity.

It is well-known that brain damage leads to significant and long-lasting
neurological deficits, e.g. paralysis or blindness. Therefore, it is of interest to
study the relationship between the structural network damage and the func-
tional one that might be observable by neuroimaging methods. The first study
related to this problem was performed by C. Stam in 2007 [16]. His group
analyzed the differences in EEG data between 15 patients with Alzheimer’s
disease (AD) and 13 control subjects. Functional connectivity was computed
using synchronization likelihood (SL) [17] and the obtained brain network
were measured by small-world network criteria [19]. Correlating these mea-
sures with clinical variables, they showed that AD is characterized by a loss of
small-world network characteristics. Note that they used an averaged network
with thresholded edge weights to eventually obtain an unweighted graph.

While we also describe brain networks using SL (to facilitate the choice
of one similarity measure between two EEG channels), a previous analysis
with averaged unweighted networks did not result in high correlations using
a variety of graph measures [7]. So, in this paper we are going to extend
this approach manifold: (1) we consider the complete series of EEG networks
without averaging over time, (2) we study weighted networks without any
edge weight threshold, (3) we use machine learning techniques to find depen-
dencies between network measures and output variables instead of correlation
coefficient analyses.
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2 Functional Connectivity

To obtain a complex brain network from neuroimaging data, it is necessary to
define and measure functional connectivity of two brain regions. Estimating
functional connectivity does not find causal connections inside the human
brain. Functional connectivity can only be interpreted as statistical relation-
ship between brain regions without implying any causal coherence [11]. Nat-
urally a variety of different functional connectivity methods can been found
in the literature (see [20] for a good overview on EEG measures).

Here, we only introduce the concept of SL [17]. Consider a multivariate
time series (e.g. a multichannel EEG recording) of length N with n variables.
Let measurement xi,k be observed at timestamp i in channel k. Firstly, a
time-delay embedding is computed by

Xi,k =
(
xi,k, xi+L,k, xi+2·L,k, . . . , xi+(m−1)·L,k

)

where L is the lag andm the dimension of the embedding. These state vectors
Xi,k shall capture the relevant patterns of the signal. Now consider only two
channels A,B. Then, the probability that Xi,k are closer to each other than
ε is

P ε
i,k =

1

2(W2 −W1)

N∑

j

W1<|i−j|<W2

θ(ε− d(Xi,k, Xj,k))

where d is typically the Euclidean distance. For each k and i the critical
distance εi,k is computed such that P

εi,k
i,k = pref whereas pref � 1 is some

user-defined threshold. Then, for each pair of points in time (i, j) within
W1 < |i−j| < W2, the number of channels Hi,j for which d(Xi,k, Xj,k) < εi,k
is computed by

Hi,j = θ(εi,A − d(Xi,A, Xj,A)) + θ(εi,B − d(Xi,B , Xj,B))

where θ(x) = 0 if x ≤ 0 and θ(x) = 1 for x > 0. The synchronization
likelihood is then given by

SLi =
1

2pref(W2 −W1)

N∑

j

W1<|i−j|<W2

(Hi,j − 1) (1)

The set of free parameters for SL can be reduced down to a size of two by
prior information about the frequency range and temporal resolution of the
signal [10].
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3 Brain Graphs

A brain graph is created when computing functional connectivity, e.g. using
SL, for each pair of variables at a given point in time. Such a network simply
serves as graphical representation of pairwise statistical dependencies among
all variables. Typically, these networks are described by graph measures (e.g.
density, clustering coefficient, average path length). Usually, the hope is that
they might correlate to clinical variables. Due to simplicity, we demand that
brain graphs are simple, i.e. they do not have any loops or multiple edges.
Since dealing with SL, we know that the brain graphs are symmetric.

3.1 The Meaning of Edges

An edge represents some kind of statistical dependency between two brain
regions, i.e. functional connectivity. The edge weight corresponds to the
strength of the functional connectivity. Most measures are normalized to [0, 1]
or [−1, 1] which enables a straightforward interpretation of an edge weight.
Commonly, researchers do not use weighted edges for graph analysis. Instead
an arbitrarily chosen threshold is used to cancel out edge with “low” weights.
Clearly, the remaining edges are unweighted. Despite the loss of informa-
tion, some researchers argue that one can show different effects with a binary
graph [13].

4 Critical Remark and Proposal

So far, we just reported standard techniques that convert neuroimaging data
into brain networks. Let us now consider a critique we face when dealing with
this approach and how to handle this problem.

We mainly argue that averaging brain graphs over time is generally not
beneficial. Averaging should only be permitted if the variations of the binary
time series (unweighted edge) or the numerical time series (weighted edge)
were close to zero and stationary. To illustrate this, just consider a graph
with two nodes, one edge and a linear trend in the evolution of the edge
weight. Then, averaging would diminish this important information. In our
application, a static analysis did not show very high correlations [7]. We will
present much stronger correlations in Section 5 using the following approach.

Remember that the patients are at rest. Thus every EEG time series can
have a different length and so does the series of networks. Now, recall that
certain graph measures are applied to each network to find global relations
between them and clinical variables. The series of networks is eventually
transformed into a multivariate time series of real-valued graph measures.
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Then, the question arises how these new time series with different lengths
can be correlated to the clinical variables. We propose to use a model-based
representation of these time series as it is independent from its length.

EEG data in rest do not show any trend and so do the graph measures.
Thus the easiest way to fit the time series of graph measures is to use vector
autoregressive (VAR) models [8]. A simple VAR model with p lags is given
by

xt = c+

p∑

i=1

Aixt−i + εt.

where c is a constant, Ai is a matrix storing the interdependence between
every pair of variable at point t− i and εt is white noise. Its coefficients Ai

can be simply flattened as vector which can eventually be correlated to the
output variables. In the next section we will evaluate this approach using a
real-world application.

5 Application and Experiments

In our experiments we used EEG data from 25 visually impaired subjects
suffering from optic nerve damages [21]. Enabling the relation of EEG graph
measures to clinical variables, so-called “visual field charts” were obtained
from every patient. They indicate the location and size of the optic nerve
damage [14]. Based on them, an expert defined the following clinical variables:

• proportion of intact/white sectors,
• proportion of relatively defected/gray sectors,
• proportion of absolutely defected/black sectors,

All of these were transformed by the cortical magnification function (CMF) [4]
resulting into 3 further variables.

To preprocess the data we did the following steps in EEGLAB [5]:

• manually removal of noisy time frames at beginning/end of each recording,
• removal of uncommon EEG channels across all subjects (28 were used),
• high-pass filtering with cutoff frequency at 1Hz to remove slow movements,
• notch filtering 50Hz to cope with European power line frequency,
• low-pass filtering with cutoff frequency at 95Hz,
• re-referencing by the average electrode,
• down-sampling to 150Hz to reduce the costs of SL computation,
• removal of biological artifacts using independent component analysis [9].

Biological artifacts that stem from electromyographic (EMG) or electro-
cardiograph (EKG) signal appear as noise in the recorded EEG signal in
all variations. For EMG/ECG removal, ICA was applied to very carefully
remove noisy components.
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We used FIR filters to obtain the conventional separation into frequency
bands. They are typically associated with different brain states [6]. These
bands are δ: f ∈ (1, 4] Hz, θ: f ∈ (4, 7] Hz, α: f ∈ [8, 12] Hz, β: f ∈ [13, 30] Hz,
γ: f ∈ [30, 50] Hz and μ: f ∈ [8, 13] Hz. We expected the clinical variables to
be somehow explainable by functional connectivity changes in these bands.
Functional connectivity was established by SL [17] for each frequency band.
We used an outer window length of W2 = 3 s and a reference probability
of pref = 0.02. To capture most of the dynamics, the sliding window shifted
every .5 s, i.e. an overlay of 5/6. Note that a statistical analysis of the averaged
graphs has been published by these authors [7].

Fig. 1 Original and fitted time series of graph measures in the α band of one
subject for p = 1, 2 on the left and right side, respectively

We applied 3 measures to every brain graph [3], i.e. average clustering
coefficient, density and global efficiency, resulting in a multivariate time series
for each subject and each frequency band. Every time series was modeled by
a VAR model with p = 1, 2 for simplicity. Thus we obtained p · n · n = 9 and
18 parameters, respectively, describing the dynamics of the corresponding
multivariate time series. Figure 1 shows an example of these time series. Every
clinical variable served as variable being depended from these inputs. We used
ridge regression (a penalized version of least-squares) with generalized cross
validation on different penalizer α ∈ {.1, .2, . . . , .9, 1} [12]. Thus we correlated
brain graph dynamics with clinical variables.

Regression performance was measured using the coefficient of determina-
tion R2 which is defined as

R2 ≡ 1−
∑N

i=1(yi − fi)
∑N

i=1(yi − ȳ)

where ȳ = 1/n
∑N

i=1 yi. Thus the closer R2 is to 1, the better is the linear fit.
Table 1 summarizes this analysis. High scores were obtained for the pro-

portion of intact and absolutely defected sectors (more or less independent
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Table 1 Regression scores R2 for every pair of frequency band and clinical variable
fitting VAR(1) (left) and VAR(2) (right)

p = 1 δ θ α β γ μ

w .198 .727 .715 .276 .207 .370
g .193 .101 .156 .240 .273 .189

b .226 .605 .692 .328 .269 .400
w CMF .179 .698 .608 .288 .232 .338
g CMF .177 .105 .183 .446 .185 .226
b CMF .206 .630 .696 .311 .273 .364

p = 2 δ θ α β γ μ

w .466 .818 .606 .517 .389 .448
g .276 .328 .608 .376 .391 .318

b .517 .844 .827 .519 .408 .496
w CMF .470 .822 .590 .551 .389 .434
g CMF .319 .331 .584 .403 .318 .341
b CMF .516 .850 .819 .526 .406 .471

from CMF). VAR models based on δ and α seem to produce suitable fea-
tures. This regression analysis clearly shows that (1) we could actually find
network features describing the dynamics of the weighted graphs and (2)
these features correlate with the extend of the vision loss.

6 Conclusion

Recently neuroscientists started transforming neuroimaging data into brain
networks. The idea behind this approach is to use graph theory and its al-
gorithms to produce meaningful features that can help to understand brain
recordings. Using any kind of time series similarity measure, the similarity of
two data channels (nodes) at some point in time produces a new time series
(edge incident to the nodes). The series of graphs is typically averaged to one
network of which its edge weights are thresholded resulting in an unweighted
network. We do not follow this “classical” approach as it omits the dynamics
of the functional connectivity. Usually several graph measures are applied to
differentiate between brain networks of distinct subjects or conditions.

Keeping the series of graphs thus creates a multivariate time series of
these measures that need to be analyzed. Therefore in this paper we used
model-based descriptions, i.e. VAR models. Regression was applied to find
linear dependencies between VAR parameters and certain variables. An EEG
application of visually impaired subjects showed that this approach is useful
for the generation of features.

In the future, we want to work with specialized graph measures for brain
networks that capture the high fluctuations and dynamics (see e.g. [1]). Last
not least, we hope to obtain more intuitive results using rule-based machine
learning approaches to group or classify subjects based on learned models.
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