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Abstract High dimensional data analysis poses some interesting and counter in-
tuitive problems. One of this problems is, that some clustering algorithms do not
work or work only very poorly if the dimensionality of the feature space is high.
The reason for this is an effect called distance concentration. In this paper, we show
that the effect can be countered for prototype based clustering algorithms by using
a clever alteration of the distance function. We show the success of this process by
applying (but not restricting) it on FCM. A useful side effect is, that our method can
also be used to estimate the number of clusters in a data set.
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1 Introduction

The curse of dimensionality for clustering can be best described by means of dis-
tance concentration. Beyer et al. [1], introduced the effect of distance concentration
for nearest neighbour queries. They showed that a nearest neighbour query is not
meaningful if the relative variance of distances to other data objects converges to
0. In other words: the difference between the nearest and furthest data object be-
comes negligible with increasing dimensionality. Durrant and Kabán [5] expanded
the argumentation by showing that the implication in Bayer et al.’s paper is indeed
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an equivalence. Since clustering is the task to find meaningful structure solely by
analysing the spacial distribution of data objects, the results of Beyer et al. and Dur-
rant and Kabán are relevant for all clustering algorithms in high-dimensional feature
spaces. Distance concentration is especially a problem if relations of distances are
analysed as it is the case for FCM and other prototype based clustering algorithms.

In this paper, we present a distance function that counters the effect of distance
concentration. Our approach does not only counter the effect of distance concen-
tration, it also presents a solution for the problem of finding the correct number of
clusters which is a specific problem for prototype based clustering algorithms.

The paper is structured as follows. In the next section, the effect of distance con-
centration is defined. In section 4 the new distance function is presented and in the
following section 5 the clustering algorithm is developed. We apply the proposed al-
gorithm and several others on a data set of aircraft movements in Section 6. Finally,
this paper ends with the conclusions and references in Section 7.

2 Distance Concentration

Let X ⊂ Rm be a finite set of m-dimensional real data objects, i.i.d. sampled from
some unknown probability distribution FX in Rm. Let p> 0 be a constant, Q∈Rm be
an arbitrary sample point, ‖·‖ :Rm−→R a metric and Dp

X (Q)= {‖x−Q‖p : x∈X}
be the set of distances, from the viewpoint of Q. Let E(Dp

X (Q)) be the mean (sample
expectation value) and V (Dp

X (Q)) the sample variance of Dp
X (Q). Then

RV (Dp
X (Q)) =

V (Dp
X (Q))

E2
(Dp

X (Q))

is called the sample relative variance of Dp
X (Q).

Formally, distance concentration occurs if for a sequence of probability distribu-
tions Fm and resulting sequences of data sets Xm and query points Qm holds:

lim
m→∞

RV (Dp
Xm
(Qm))→ 0.

Or in other words, the relative variance of distances becomes negligible.
The occurrence of distance concentration depends on the norm ‖ · ‖ and the dis-

tribution FX . Let here, ‖ · ‖ be one of the Lp norms with p≥ 1. A result from Hin-
neburg et. al [6] shows that distance concentration can only occur for norms with
p > 1, which means only the Manhattan distance L1 norm is stable. If a norm is
unstable, distance concentration can occur for a wide range of data set distributions
[1]. For example for an m-dimensional normal distribution with i.i.d. dimensions:
Fm = (N (1,0), . . . ,N (1,0))⊥ with ⊥ denoting the transposed vector and N (1,0)
denoting the 1-dimensional standard normal distribution. Also more complex distri-
butions like a uniform distribution on the hypercube surface (no pair of dimensions
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are independent given any subset of other dimensions) is suffering from distance
concentration.

There are two problems with this probability theory result in clustering applica-
tions. First, no data set is really going to have an infinite number of features. Second,
distance concentration might not occur for the data set it self as it is supposed to be
clumped up into several clusters, otherwise clustering would not make any sense in
the first place. However, even if the relative variance of distances of a given data
set is not 0, clustering algorithms still have their problems because the probability
distribution FX is not known in advance and the clumping effect of clusters might be
too weak for the algorithm to recognise. Especially for fuzzy prototype based clus-
tering algorithms this is a problem because they tend to evaluate relative distances
in order to assign fuzzy values.

3 Distance Concentration and FCM type Clustering Algorithms

Let X = {x1, . . . ,xn} ⊂ Rm be a m-dimensional data set with n data objects, Y =
{y1, . . . ,yc} ⊂ Rm a set of c prototypes, ‖ · ‖= L2 the euclidean metric, 1 < ω ∈ R
the fuzzifier and U ∈ [0,1]c×n the membership matrix with ui j ∈ [0,1] as elements
subjective to 1 = ∑

c
i=1 ui j. The symbol di j = ‖yi−x j‖ denotes the distance between

a data object and a prototype with ‖ · ‖ = L2 being the euclidean distance. The
fuzzy c-means algorithm [4, 2] is defined by minimizing the objective function with
Lagrange multipliers Λ = {λ1, . . . ,λn}:

JFCM (X ,Y,U,Λ) =
c

∑
i=1

n

∑
j=1

uω
i jd

2
i j−

n

∑
j=1

λ j

(
c

∑
i=1

ui j−1

)
. (1)

The objective function is minimized using the alternative optimization algorithm
which iteratively optimizes the prototype locations Y and membership values U .
The update equations for defining the next iteration (t+1) from the current iteration
(t) with the time variable t ∈ N are

u(t+1)
i j =

(
1

dt
i j

) 2
ω−1

c

∑
k=1

(
1

dt
i j

) 2
ω−1

and yt+1
i =

n

∑
j=1

(
ut+1

i j

)ω

x j

n

∑
j=1

(
ut+1

i j

)ω
. (2)

When FCM is applied on a high-dimensional data set, this update rule becomes
problematic. It starts with the initialization, the initial positions Y 0 = {y0

1, . . . ,y
0
c}

of prototypes must be somehow determined. A sample of prototype positions as a
subset of the data set, Y ⊂ X , is usually not a good idea as this almost guaranties that
not all clusters are found. Therefore, Y 0 is usually sampled from some distribution
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Finit of the feature space, for example a uniform distribution on the smallest data
set enclosing hyperrectangle. From the view point of the data object (Q = x j), ac-
cording to the last section, all distances to the members of a sample of a probability
distribution Finit, like Y 0, becomes equal. Formally, let Q = x j ∈ X , for an 1≤ j≤ n,
then

d∗j = E(DY (x j))≈ ‖y− xi‖,∀y ∈ Y. (3)

This has very bad implications on the performance of FCM. Especially because
the distances to the prototypes w.r.t. to a data object are not evaluated by their ab-
solute value, but by their relative value to one another. Following from equation
(3):

ui j ≈

(
1

d∗j

) 2
ω−1

c
∑

k=1

(
1

d∗j

) 2
ω−1

=

(
1

d∗j

) 2
ω−1

c ·
(

1
d∗j

) 2
ω−1

=
1
c

; yi≈

n
∑
j=1

( 1
c

)ω
x j

n
∑
j=1

( 1
c

)ω
=

n
∑
j=1

( 1
c

)ω
x j

n ·
( 1

c

)ω =
1
n

n

∑
j=1

x j.

All prototypes are updated to a position, close to the centre of gravity of the
data set X (for experimental proof, see section 6). Our previous work [8] shows,
that this can only be prevented by initializing the prototypes near the clusters in
X which would increase the variance in DY (x j) for all data objects of a cluster
with a prototype nearby. The probability that all or at least most prototypes are
initialized near a cluster is almost 0 because the hypervolume of the space near the
clusters is very small, compared to the complete relevant feature space. This means
that either the distribution of data objects FX has to be known in advance, which
is usually not the case. Or another clustering algorithm must be used to determine
the initial location of the prototypes, which would make the application of FCM
unnecessary. Also the question is, if there is an other, reliable clustering algorithm
for high-dimensional data.

It should be noted that also the EM algorithm and other FCM related algorithms
like noise clustering [3] and in fact most prototype based fuzzy type algorithms are
effected by the same problem. Hierarchical and density based clustering algorithms
are usually also not a good choice because the distances between clusters tend to
be similar to the distances of data objects of one cluster which prevents a ’natural’
choice of cutting the cluster hierarchy. Therefore, it is hard to determine the natural
number of clusters or in general parameters necessary to run these algorithms.

4 Alternative Distance Function

In the last section, we determined that it is almost impossible to initialize FCM in a
high-dimensional space in such a way that prototypes find a cluster. The idea is, to
adjust the distance function according to the new circumstances. Hsu and Chen [7]
proposed a new distance function (which is not a norm):
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SDP(x,y) =
dim

∑
k=1

ωk fsk1,sk2 |xk− yk| and fsk1,sk2(x) =

0 i f x < sk1
x i f sk1 < x < sk2
ex i f sk2 < x

As this function is very useful and versatile, it contains many (3 · dim) parameters
that are difficult to set. An other problem is, that the update equation for the pro-
totypes in FCM must be solvable for the prototype location, which is not the case
for most unusual norms as for example the SDP function. We propose an alternative
distance function that is also useful for clustering purposes.

The reason FCM does not work very well is, that the distances have not enough
contrast to be useful for assigning membership values. So the goal is to increase
the contrast in distance values but leaving the update equation for the prototypes
solvable for the prototype location. The DCR (Distance Concentration Resistant)
function is defined for a distance correction value δ ≥ 0:

DCRδ (x,y) = ‖x− y‖2−δ

This function is not a norm because its value can be less than 0. However, this
function is very useful for replacing the distance function in FCM. With the param-
eter δ , it is possible to increase the contrast in distance values and ∇yDCRδ (x,y) =
∇y‖x− y‖2 because δ is a constant value.

5 FCM with DCR as Distance Function

In the objective function of FCM, the distance function di j is replaced with DCRi j =
DCRδi(x j,yi):

JDCRFCM (X ,Y,U,Λ) =
c

∑
i=1

n

∑
j=1

uω
i jDCRi j−

n

∑
j=1

λ j

(
c

∑
i=1

ui j−1

)
. (4)

With the parameters δi, i = 1, . . . ,c it is possible to adjust the distance values in such
a way, that the effect of distance concentration in high dimensions is nullified. The
cleanest approach would be, to set δi = min(D2

X (yi)), because this way, all distances
would remain positive or equal to 0. However, practical tests have shown that this
is not enough, the prototypes would get stuck on randomly scattered noise data
objects.

We use a more radical approach. For a parameter α ∈ R, α > 0, set δi =
max{0,E(D2

X (yi))−α ·V (D2
X (yi))}. So the distance reduction value δi is set to the

mean of distances (from the point of view of the prototype), reduced by α times
the sample variance of the distances. A value of α = 3 is usually a good choice
because the Cantelli inequality (one sided Chebyshev’s inequality) guarantees that
at most 10% of the data objects are closer to yi than δi. That however implies that
there might be negative distance values. That is not a problem for the objective
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function as its actual value is not important. For updating the membership values
however, the condition of ui j ≥ 0 must be ensured using the Karush-Kuhn-Tucker
multiplier. Because that is computationally difficult, the condition is satisfied manu-
ally: if DCRi j < 0, the corresponding membership value is set to ui j = 1. If there are
k prototypes with negative DCR value, the corresponding membership values are set
to 1

k .
If two or more prototypes are coming close to a cluster, they tend to move very

close together due to the equal sharing of membership values of nearby data ob-
jects. This multiple representation of clusters can be resolved by simply removing
all redundant prototypes. Therefore, the algorithm can end with less prototypes than
it started, which means that it has to be initialised with an overestimation of proto-
types. This also solves the problem of defining the number of clusters in a data set,
which is often not known and hard to do, especially for high-dimensional data sets.
Due to the overestimation of prototypes in the beginning, some prototypes end up
covering very small cluster or random noise that created a denser area by chance.
These prototypes usually represent only very small number of data objects which
can easily be detected at the end of the update process. By removing all prototypes
which have a sum of membership values below a predefined threshold: ∑

n
j=1 ui j < ξ

with threshold 0 < ξ ∈ R, these unecessary prototypes are remuved.

6 Application in S.O.D.A.

In this section we want to demonstrate the problems of FCM and similar algorithms
as well as demonstrate the advantages of the proposed algorithm. We use two exam-
ples, one real world example in cooperation with Fraport AG and and one artificial
generated example to demonstrate that the problems are not induced by the specific
data set. The Fraport AG develops an analysis tool called S.O.D.A. (Surveillance
Data Analysis Tool) to analyse the movement patterns of aircraft on the airfield of
the Frankfurt airport. The database contains approx. 700.000 aircraft tracks and the
goal is to find groups of aircraft that move similar routes.

Due to the large number of tracks in the database and the complexity of com-
paring two tracks directly, we decided to simplify the task by transforming the data.
A set of 457 reference points is added to the airport structure, for each track, the
closest distance to each reference point is computed. To simplify the data further,
the distance values are transformed using a simple, trapezoid fuzzy rule: let d ∈ R
be the minimal distance of a reference point to an aircraft track, then f (d) = 1 for
d ≤ a, f (d) = d−a

b−a for a < d < b and f (d) = 0 if d ≥ b with a = 25m and b = 50m.
This rule simply states that for f (d) = 1, it is sure that the aircraft passed over this
point, for f (d) ∈ (0,1) the case is unsure and for f (d) = 0 it is sure the aircraft did
not pass over the reference point. Each fuzzified distance value corresponds to one
dimension, the resulting dataset is therefore 457-dimensional. In Figure 1 (leftmost
subfigure), 10’000 transformed aircraft tracks are presented as grey points, projected
on two of the 457 dimensions and with some jitter for demonstration purposes. In
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the second left subfigure of Figure 1, an artificial dataset with 50 dimensions, 100
uniform distributed clusters which have in turn are sampled from a 100-dimensional
normal distribution with the location of the cluster as expectation vector. Also the
artificial data set contains 10% uniform distributed noise.

Fig. 1 High-dimensional data sets, projected on 2 dimensions

The effect of FCM on this data set is demonstrated by the colourful circles which
represent the prototypes. The lines represent the ways, the prototypes took from
their initial position to their their final position. It is clearly visible that FCM is
not working in both cases. The colour of the data objects indicate that they are
shared equally by all clusters as their colour indicate their cluster membership. The
third and fourth subfigure of Figure 1 present the same datasets, but instead of the
euclidean distance, DCR is used. The algorithm was initialised with 200 prototypes
in both cases. In the S.O.D.A. dataset, 62 clusters were found and on the artificial
dataset, 99 out of 100 clusters which is almost perfect. In Figure 2, 8 out of the 62
clusters of the S.O.D.A. dataset are presented. To reduce the overlapping effect of
fuzzy clustering for this figure, only tracks with a membership value of at least 0.85
to their respective cluster are shown.

Fig. 2 8 Clusters in the S.O.D.A. dataset
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7 Conclusions

We presented a very simple alteration to the distance function that is very effective
in countering effect of distance concentration on a prototype based clustering al-
gorithm. The alteration provides additionally the chance of estimating the number
of clusters in a data set by overestimating the number of prototypes needed and re-
moving unnecessary ones. The process has been shown for FCM in particular but is
not restricted to it, the distance function can also be useful for EM, NC and similar
algorithms. To prove our point, we have applied the algorithm on aircraft movement
data and on an artificial data set.
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