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FUZZY CLUSTERING WITH POLYNOMIAL FUZZIFIER FUNCTION IN
CONNECTION WITH M-ESTIMATORS

ROLAND WINKLER1, FRANK KLAWONN2, RUDOLF KRUSE3

Abstract. The invention of fuzzy set theory by Lotfi A. Zadeh had great impact on linguistic
computing and machine controlling. Also data mining algorithms were inspired by this idea,
routing back to fuzzy clustering. In this paper, we will explore the connections of fuzzy clustering
approaches to hard clustering approaches as well as on statistically motivated algorithms. We
will use Klawonn and Höppners idea of connecting hard clustering with fuzzy clustering and
specialize their algorithms to define an M-estimator. Furthermore we investigate the transition
from M-estimators to fuzzy clustering algorithms. To extend M-estimators to a multi-cluster
problem, we use a clever normalization function of the robust weights, similar to fuzzy c-means.
The resulting algorithm provides an update strategy that can be used with every robust loss
function that can be used for M-estimators. However, the success of the clustering algorithm
depends on the properties of the loss function.

Keywords: fuzzy c-means, M-estimators, polynomial fuzzifier function, robust statistics; noise
clustering, multiple prototypes, robust statistics
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1. INTRODUCTION

In this paper, connections between M-estimators and fuzzy clustering are explored, hence a
short historic review on the development of both classes of algorithms is given before going into
detail.

When Lotfi A. Zadeh first introduced his fuzzy set theory [18] in 1965, it was intended to
modulate set memberships that are not well defined. The main goal was to modulate linguistic
fuzzy terms like ’warm’, ’cold’ etc., hence the name fuzzy set theory. 8 years later, in 1973,
Dunn [7] combined MacQueens [17] hard c-means (HCM) algorithm with Zadehs idea of fuzzy
sets to create the first version of fuzzy c-means. This version was than generalized by Bezdek [2]
in 1981 by introducing the concept of the fuzzifier. This last version is now commonly referred
as fuzzy c-means (FCM). FCM is usually very stable and it has advantages compared to HCM
and therefore and became very popular. However, it lacked the ability to handle outliers. Dave
[3] published an extension (NC = noise clustering) to fuzzy c-means in 1991 that can handle
noise very well by introducing a noise cluster that has constant distance to all data objects.

The concept of the fuzzifier is changed by Klawonn and Höppner [16] in 2003 by replacing the
exponential function with a (parametrized) polynomial of degree 2. This polynomial fuzzifier
function can be seen as linear combination of FCM and HCM with the linear parameter replacing
the role of the fuzzifier (PFCM = FCM with polynomial fuzzifier function). This type of FCM
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not only assigns values of the open interval (0, 1), but allows membership values of [0, 1], including
0 and 1.

Parallel to the development of FCM and its descendants, the theory regarding M-estimators
(ME) evolved. As clustering in general refers to the problem of multiple class partitioning of
data objects, statistical estimators are developed assuming only one true cluster. We concentrate
here on estimating the mean of a data set as it is related to finding a proper location for the
prototypes in case of FCM.

Maximum-likelihood estimation started way before development of the computer. It prob-
ably was invented before 1800 but became popular by publications of Fischer after 1912 [9].
Maximum likelihood estimation had also problems with outliers and therefore the more robust
version of ’maximum likelihood type’ M-estimators are introduced by Huber [13] in 1964. For
M-estimators, the assumption on the data distribution is relaxed by replacing the log-likelihood
function with a more robust loss function that is not necessarily based on a probability distri-
bution. However, the estimation result of the M-estimator should be close to fit the parameter
to the unpolluted (but unknown) true data distribution.

Since the first introduction of M-Estimator, many other versions of the loss function were
developed which leads to M-estimators with different properties. For example: Tukey’s biweight
[1], Hampel’s [11], Cauchy’s and Huber’s estimator [12, 13].

The problem, targeted by M-estimators can be seen as a special case of clustering, namely
a two-class clustering problem with only one ’good’ cluster and one noise cluster. Because M-
estimators target a subclass of problems of general clustering algorithms, it might be possible
to find M-estimators that behave just like clustering algorithms for one-cluster problems. Davé
and Krishnapuram showed in [5] that it is indeed possible to define an M-estimator based on
NC. In this paper, we show that it is also possible to find an M-estimator, based on PFCM.

The big question is however, is it possible to find clustering algorithms, based on M-estimators?
This direction is much harder to accomplish since the problem, targeted by clustering algorithms
is more general and therefore, specialized algorithms might not be extendible on the broader
class of problems. M-estimators are not designed to handle more than one prototype, which is
why they can not be naturally extended to perform well on data sets with several clusters. A
straight forward attempt has been made by Frigui and Krishnapuram in [10] by defining the
robust c-prototypes (RCP) algorithm. In RCP, the (squared) distance is wrapped by a robust
loss function, similarly to M-estimators. The problem with this approach is, that the choice of
the loss function is very limited to ensure a closed form for solving the new prototype position
(similar to Equation (2) on Page 3 for FCM).

In the next section, the basics regarding fuzzy c-means clustering with and without a noise
cluster as well as with and without polynomial fuzzifier function are introduced. Section 3 intro-
duces these clustering algorithms as M-estimators and in Section 4, the introduced fuzzy related
M-estimators are compared to other, well known M-estimators. In Section 5, the extension from
single prototype M-estimators to multiple prototype fuzzy clustering algorithms is discussed.
Finally, the conclusions in Section 6 are followed by the references.

2. FUZZY CLUSTERING, LEAST SQUARES AND M-ESTIMATORS

Although fuzzy c-means (FCM) and noise clustering (NC) are very well known, some math-
ematical details are needed in the next section. Let X ⊂ V be a finite set of data objects
of a vector space V with |X| = n. The clusters are represented by a set of prototypes
Y = {y1, . . . , yc} ⊂ V which can be initialized randomly, only the number of prototypes c
must be known in advance. Let 1 < ω ∈ R be the fuzzifier and U ∈ Rc×n be the partition
matrix with uij ∈ [0, 1] and ∀j :

∑c
i=1 uij = 1. And finally, let d : V × V −→ R be a distance

function with its abbreviation dij = d(yi, xj) and fFCM be the fuzzifier function fFCM(u) = uω.
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Figure 1. Fuzzified membership values of the prototypes of FCM with 3 clusters,
without a noise cluster (left) and with a noise cluster (right).

Fuzzy c-means clustering is based on an objective function J that is to be minimized:

JFCM(X,U ,Y ) =
c∑
i=1

n∑
j=1

fFCM(uij)d2
ij =

c∑
i=1

n∑
j=1

uωijd
2
ij .

The minimization of J is done by iteratively updating the members of U and Y and is computed
using a Lagrange extension to ensure the constraints

∑c
i=1 uij = 1. The iteration steps are

denoted by a time variable t ∈ N denoting t = 0 as the initialization step:

ut+1
ij

FCM=
(dtij)

2
1−ω

c∑
k=1

(
(dtkj)

2
1−ω
) and (1)

yt+1
i

FCM=

n∑
j=1

fFCM

(
utij

)
· xj

n∑
j=1

fFCM

(
utij

) =

n∑
j=1

(
utij

)ω
· xj

n∑
j=1

(
utij

)ω . (2)

For noise clustering, an additional cluster is specified which is represented by a virtual prototype
y0 which has no location in V . Instead, it has a constant distance 0 < dnoise ∈ R to all data
objects: ∀j : d0j = d(y0, xj) = dnoise which is called noise distance. y0 is not represented
as a member of V , which means, it is not updated during the iteration process. However,
the membership values are updated as if y0 was a normal prototype. The noise prototype is
introduced to assign higher membership degrees to the noise cluster for all data objects whose
distance to regular prototypes exceeds the noise distance. This favours regular prototypes to
be better placed in the center of data clusters without being attracted by noise data. Also it
suppresses the unwanted effect that membership values converge to 1

c for data objects far away
from all normal prototypes. Figure 1 shows the influence of the noise cluster to the fuzzified
membership values. Three prototypes are placed at 0.2, 1.0 and 1.2 in an one dimensional
environment and the y-achsis represents the fuzzified membership values of each prototype.

Klawonn et al. addressed in [15, 16] a different, fuzzy related problem. Namely, that the
membership degrees to a prototype are larger than zero for each data object that is not identical
to another prototype. In other words, all data objects influence all prototypes. This is not
always intuitive or wanted.
Fuzzy clustering became very popular in comparison to hard clustering because it seems to
have less problems with local minima [14] and using membership values between 0 and 1 was
very helpful to characterize data objects that can not be uniquely assigned to any prototype.
But in exactly the same way, it prevents a hard classification for data objects that should be
assigned uniquely to a single prototype. Fuzzy c-means clustering with a polynomial fuzzifier
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Figure 2. Fuzzified membership values of the prototypes of PFCM with 3 clus-
ters, without a noise cluster (left) and with a noise cluster (right).

function (PFCM) (please note the difference to the abbreviation PCM which is usually used for
possibilistic c-means clustering) replaces the exponential fuzzifier function fFCM(u) = uω by a
polynomial fuzzifier function of the form fPFCM(u) = 1−β

1+βu
2 + 2β

1+βu, β ∈ [0, 1). It is in a way
a linear combination of hard clustering and FCM with ω = 2. The parameter β describes the
ratio of distances at which the clustering result becomes crisp [15, 16].

The new objective function for PFCM differs solely in the fuzzifier function:

JPFCM(X,U ,Y ) =
c∑
i=1

n∑
j=1

fPFCM(uij)d2
ij =

c∑
i=1

n∑
j=1

(
1− β
1 + β

u2
ij +

2β
1 + β

uij

)
d2
ij .

The iterative update process however changes because the constraint of non-negative member-
ship values is not naturally fulfilled as it is in FCM. So if the membership values would be
calculated analogously to FCM, negative membership values would occur. To avoid this, the
constraint of uij ≥ 0 must be ensured by different means. It holds, that dij > dkj ⇒ uij ≤ ukj .
First, the prototypes are sorted according to their distance to xj which gives an ordering in
membership values as well. Only those prototypes are included into the membership update
process, for which the membership degree would be larger than zero. (It is possible that only
one prototype would satisfy this condition. In this case, the clustering becomes crisp.) The
membership for all other prototypes is set to zero. So the fuzzy membership value is only cal-
culated for a subset of all prototypes and the number of these prototypes is denoted by ĉj . The
permutation of the sorted prototypes is denoted by ϕ.

The update process for the position of the prototypes is similar to FCM, only the fuzzifier
function is replaced by fPFCM. The update process for the membership values of PFCM however,
has changed to

ut+1
ij

PFCM=


1

1−β

 1+(ĉtj−1)β

ĉt
j∑

k=1

(dt
ij

)2

(dt
ϕ(k)j

)2

− β

 iff ϕ(i) ≤ ĉtj

0 otherwise

. (3)

Figure 2 shows an example of PFCM with and without the noise clustering. Extending PFCM
with a noise cluster works analogously to the transition from FCM to NC.

M-estimators (M-E) are based on the idea of maximum likelihood estimation (MLE). MLE [8]
is a method to find the parameters of a statistical model in such a way that it becomes maximal
likely to observe the given data set. This proposition already contains the greatest weakness of
this method: the data generating process must be known in order to choose the correct model. If
the model is chosen (even slightly wrong), no parameter optimization can generate a meaningful
result. Often, the correct model is not known or the data set contains outliers that make it
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impossible to estimate the correct parameters even if the underlying model might be correct.
M-estimators are designed in such a way that they still produce meaningful results, even if the
model assumption is not correct or the data contains outliers. MLE is usually performed using
the expectation maximization (EM) algorithm [6].

The EM algorithm is based on an objective function as FCM but with a statistical background.
As for FCM, let there be c clusters and X be the data set. Consider the random variable
X̃ : Ω → V that has the data space as domain and let fX̃ : X × Θ → R be its probability
density function that depends on some parameter set Θ ∈ Θ. The underlying model assumption
is done by choosing the kind of density function fX̃ . The likelihood of observing the data set is
specified by the likelihood function

JMLE(X,Θ) =
n∏
j=1

fX̃(xj),

which plays the role of the objective function for FCM but in this case, must be maximized. For
computational properties, the negative log-likelihood of the data set is optimized instead of the
likelihood.

− ln JMLE(X,Θ) = − ln

 n∏
j=1

fX̃(xj ,Θ)

 =
n∑
j=1

− ln fX̃(xj ,Θ),

which in turn must be minimized. The new minimum is located at the same place as the
maximum of the likelihood function because the negative logarithm is a strictly decreasing
function. Normal statistical functions like normal distributions or even mixtures of normal
distributions are very often used. Single outliers can cause significant damage to the parameter
estimation, not only for normal distributions. Therefore, in robust statistics the model is replaced
by a robust loss function ρ that is not necessarily based on a probability density function
ρ(xj ,Θ) = − ln fX̃(xj ,Θ). Therefore, Θ = y is interpreted as prototype, y ∈ Y and the function
g(x, y) = ρ(‖x−y‖) is interpreted as a loss function ρ : R→ R that takes the distance ‖x−y‖ as
an argument with ‖·‖ as the Euclidean distance. Finally, the M-estimator (maximum-likelihood-
type estimator) is an optimization problem that is based on minimizing the following objective
function:

JM-E(X, y) =
n∑
j=1

ρ(dj),

with dj = ‖xj−y‖. For a local minimum, a necessary condition is, that the derivative is zero.
Usually, it is not possible to calculate a global minimum for this objective function directly.
Therefore, similar to FCM, an iterative update process is used. Let ψ(dj) = ψ(‖xj − y‖) =
∂
∂yρ(‖xj − y‖) be the derivative of ρ and wj = w(dj) = ψ(dj)

dj
. The optimization criterion is:

0 =
n∑
j=1

ψ(dj) ·
∂

∂y
dj =

n∑
j=1

wj · dj ·
∂

∂y
dj = 2

n∑
j=1

wj · (xj − y). (4)

This holds, because dj has been defined as the Euclidean distance:
dj · ∂∂ydj = ‖xj − y‖ · ∂∂y‖xj − y‖ = 1

2
∂
∂y‖xj − y‖

2 = (y − xj). From Equation (4) follows by
rearranging:

y =

∑n
j=1wjxj∑n
j=1wj

. (5)

Thus, y is the weighted mean of the data set where the weights in turn depend on y in relation
to the data objects. This provides an iterative update process for M-estimators. The equation
looks very much like the update equation for FCM or PFCM, if the term wj is replaced by
fFCM(uij) or fPFCM(uij).
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3. M-estimators using fuzzy related error functions

One general goal is, to find an error evaluation function ρ for an M-estimator that shows
the same behaviour like PFCM. Therefore, the M-estimators with an error function similar to
FCM as Davé and Krishnapuram have discussed in [5] is developed for PFCM. FCM usually is
designed for many clusters and one noise cluster in case it is desired. This scenario does not fit
to the M-estimator approach because M-estimators are assumed to have one prototype (model).
To find an evaluation function ρ that is similar to FCM or PFCM, these clustering approaches
have to be restricted to one “normal” and one noise cluster. With only one “normal” prototype,
the update equation for the membership values for FCM (1) and PFCM (3), respectively, can
be simplified. First, some of the indices can be skipped. uj := u1j is the membership of the jth
data object to the normal cluster. u0j = 1−uj is the membership to the noise cluster and of no
interest at this point. y := y1 is the location of the one prototype and dj := d1j is the distance of
the jth data object to the prototype. The simplified version of the FCM membership equation
update is:

ut+1
j

FCM=
(dtj)

2
1−ω(

dtj

) 2
1−ω + d

2
1−ω
noise

=
1

1 +
(

dtj
dnoise

) 2
ω−1

. (6)

Due to the restriction to only 2 clusters, the PFCM update formula becomes very simple in
comparison to the original approach. The variable ĉj can be removed because it can either be
1 which is the crisp case or 2 which is the fuzzy case. In the crisp case, the membership to
the normal prototype is either exactly 0 or exactly 1 which does not require an update formula,
a simple case distinction will do. Furthermore, the sorting of clusters becomes unnecessary.
Equation (3) changes therefore to the following:

ut+1
j

PFCM=



1 if (dtj)
2

d2noise
≤ β

1
1−β

 1+β

1+
(dtj)

2

d2
noise

− β

 if β <
(dtj)

2

d2noise
< 1

β

0 if 1
β ≤ (dtj)

2

d2noise

. (7)

The update formula for the prototype remains unchanged for both variants of membership
functions f = fFCM and f = fPFCM.

yt+1 =

∑n
j=1 f(utj)xj∑n
j=1 f(utj)

. (8)

Based on the idea in [5, 4], the functions w, φ and ρ are defined in such a way that the resulting
M-estimator shows the behaviour of FCM. If the behaviour is supposed to be equal, the update
procedures for the prototypes must be equivalent. For updating the prototype position, wj is
considered to be a constant in the M-E iterative process very much like uj in the update process
for FCM. From Equation (5) and (8) it can be concluded, that wj = wj(dj) = fFCM(uj) must
hold while uj is considered as a function of dj as it is shown in Equation (6). With w(dj) = ψ(dj)

dj
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and ρ(dj) =
∫ dj

0 ψ(s)ds, it is obtained:

wFCM(dj) =

 1

1 +
(

d2j
d2noise

) 1
ω−1


ω

, (9)

ψFCM(dj) = dj

 1

1 +
(

d2j
d2noise

) 1
ω−1


ω

and

ρFCM(dj) =
1
2
d2
j

 1

1 +
(

d2j
d2noise

) 1
ω−1


ω−1

.

The resulting M-estimator behaves just like FCM in the above stated scenario of one “normal”
and one noise cluster. Let JM-E FCM denote the objective function that describes the optimiza-
tion process for the M-estimator using ρFCM:

JM-E FCM(X, y) =
n∑
j=1

ρFCM(dj).

The behaviour of PFCM is in some way different from FCM because it explicitly allows
crisp results. As for the FCM M-estimator, the PFCM M-estimator equation is defined as
follows: wPFCM(dj) = fPFCM(uj) with uj is defined by Equation (7). With fPFCM(1) = 1 and
fPFCM(0) = 0 and

fPFCM(uj) =
1− β
1 + β

u2
j +

2β
1 + β

uj

=
1− β
1 + β

(
1

1− β

)2

 1 + β

1 +
d2j

d2noise

− β


2

+
2β

1 + β

 1
1− β

 1 + β

1 +
d2j

d2noise

− β




=
1

1− β2


 1 + β

1 +
d2j

d2noise


2

− β2

 (10)

for uj ∈ (0, 1). This leads to

wPFCM(dj) =



1 if
d2j

d2noise
≤ β

1
1−β2

 1+β

1+
d2
j

d2
noise

2

− β2

 if β <
d2j

d2noise
< 1

β

0 if 1
β ≤ d2j

d2noise

, (11)
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ψPFCM(dj) =



dj if
d2j

d2noise
≤ β

dj
1−β2

 1+β

1+
d2
j

d2
noise

2

− β2

 if β <
d2j

d2noise
< 1

β

0 if 1
β ≤ d2j

d2noise

and

ρPFCM(dj) =



1
2d

2
j if

d2j
d2noise

≤ β

1
2

1
β2−1

[
β2
(
d2
j + d2

noise

)
+ (β+1)2d4noise

d2j+d
2
noise

]
+ ρ∗1 − ρ∗2

if β <
d2j

d2noise
< 1

β

ρ∗1 − ρ∗2 + ρ∗3 if 1
β ≤ d2j

d2noise

=



1
2d

2
j if

d2j
d2noise

≤ β

1
2

1
β2−1

[
β2
(
d2
j + d2

noise

)
− (β + 1)2 d2jd

2
noise

d2j+d
2
noise

] if β <
d2j

d2noise
< 1

β

1
2d

2
noise if 1

β ≤ d2j
d2noise

.

where ρ∗1 to ρ∗3 describe the border values of the resolved integrals. ρ∗1 is the right border in
the first case, ρ∗2 is the left boarder for the second case and ρ∗3 is the right border in the second
case.

ρ∗1

d2j=βd
2
noise

=
1
2
βd2

noise, (12)

ρ∗2

d2j=βd
2
noise

=
1
2

1
β2 − 1

[
β2
(
βd2

noise + d2
noise

)
+

(β + 1)2 d4
noise

βd2
noise + d2

noise

]

=
1
2
β2 + 1
β − 1

d2
noise and (13)

ρ∗3

d2j=
1
β
d2noise

=
1
2

1
β2 − 1

[
β2

(
1
β
d2

noise + d2
noise

)
+

(β + 1)2 d4
noise

1
βd

2
noise + d2

noise

]

=
β

β − 1
d2

noise. (14)

For example, in the third case the integral can be decomposed as follows:

ρPFCM(dj) =

dj∫
0

ψPFCM(x)dx

=

√
βd2noise∫
0

ψPFCM(x)dx

︸ ︷︷ ︸
=ρ∗1

+

√
1
β
d2noise∫

√
βd2noise

ψPFCM(x)dx

︸ ︷︷ ︸
=ρ∗3−ρ∗2

+

dj∫
√

1
β
d2noise

ψPFCM(x)dx

︸ ︷︷ ︸
=0

.
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The case distinction is more or less similar to the M-estimator of Hampel et al. Like JM-E FCM,
let JM-E PFCM denote the objective function that describes the optimization process for the M-
estimator using ρPFCM:

JM-E PFCM(X, y) =
n∑
j=1

ρPFCM(dj).

Initialization can be a quite hard problem, especially for clustering algorithms with multi-
ple prototypes. However, for prototype-based M-estimators like FCM and PFCM related M-
estimators, the situation is much better. Due to the fact that there is only one prototype to be
initialized, simple statistical methods can be used. For example the multidimensional median,
that takes each component of the vector space as single median. Alternatively, a truncated
mean with a large truncated area might also be a good initialisation. For simplicity, only the
(multidimensional) median is considered. For the PFCM M-estimator, one specific problem can
arise. Because it does not “see” the full data set when weights are zero, it is likely, that data
objects far away will never influence the calculation process. On the one hand, this is good for
the robustness of the algorithm. On the other hand, it can mean that there are no data objects
in the calculation area of the prototype. That can happen after initialization. If that happens,
either the initialization was not correct or the noise distance parameter dnoise was ill chosen.

Depending on the problem, it might be useful to use the FCM M-estimator to find a good
initialization for the PFCM M-estimator. The advantage of the FCM M-estimator is that it
takes all data objects into account and will end up in close proximity of at least one data object.
But also for this, it is easy to construct an example where the prototype ends up in a very small
group of data objects that have nothing to do with the majority of the data. These problems
are caused by the local nature of PFCM M-estimators. It would be best if some structural
knowledge of the data set is available to define a meaningful starting point. Otherwise, several
random initializations might lead to good results.

4. Comparing M-estimators

The influence functions (IF) for the fuzzy clustering algorithm induced M-estimators FCM
M-E and PFCM M-E can be computed in order to analyse their robust properties. For both, the
update function follows Equation 8 which means, y is the weighted mean of the data objects. In
this sense, the prototype y has the weight Wy =

∑n
j=1 f(uj) =

∑n
j=1wj . Let X̃ : Ω→ V be the

probability distribution that describes the data set and ∆x′ be the probability distribution with
point mass 1 at x′. Let T be an M-estimator of domain V that follows Equation 5, t ∈ [0, 1] and
the influence function be

IF (x′, T, X̃) = lim
t↓0

T ((1− t)X̃ + t∆x′)− T (X̃)
t

. (15)

For the objective function J ′ =
∑n

j=1(1 − t)f(uj)‖xj − y′‖2 + tf(ux′)‖x′ − y′‖2 with f being a
fuzzifier function, the estimator has the form

y′ =
(1− t)

∑n
j=1 f(uj)xj + tf(ux′)x′

(1− t)
∑n

j=1 f(uj) + tf(ux′)
=

(1− t)Wyy + tf(ux′)x′

(1− t)Wy + tf(ux′)
. (16)

This notation is easily extended from the discrete form to probability density functions which
can be inserted into the influence function. The prototype weight is defined as Wy =

∫
x∈V w(‖x−
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Table 1. Several loss functions and their related weight functions

Function and

its Parameters
Loss Function ρ(d) Derivative ψ(d) Weight function w(d) Parameter Range

Mean 1
2
d2 d 1 0 ≤ d

Median d 1 1
d

0 ≤ d

FCM

dnoise > 0

ω > 1

d2

2

 1

1+

(
d2

d2
noise

) 1
ω−1


ω−1

d

 1

1+

(
d2

d2
noise

) 1
ω−1


ω  1

1+

(
d2

d2
noise

) 1
ω−1


ω

0 ≤ d

PFCM

dnoise > 0

0 ≤ β < 1



1
2
d2

1
2

1
β2−1

[
β2
(
d2j + d2noise

)
− (β + 1)2

d2jd
2
noise

d2j+d2noise

]
1
2
d2noise



d

dj

1−β2


 1+β

1+
d2

j

d2
noise


2

−β2



0



1

1
1−β2


 1+β

1+
d2

j

d2
noise


2

−β2



0

d2

d2noise
≤ β

β < d2

d2noise
< 1

β

1
β
≤ d2

d2noise

Huber

k > 0

{ 1
2
d2

k · d− 1
2
k2

{
d

k

{
1
k
d

0 ≤ d < k

d ≥ k

Hampel

0 < a ≤ b ≤ c
a1 = ab− 1

2
a2

a2 = a
2

(c− b)



1
2
d2

a · d− 1
2
a2

a1 + a2

(
1−

(
c−d
c−b

)2
)

a1 + a2


d

a

a
(
c−d
c−b

)
0


1
a
d

a
d

(
c−d
c−b

)
0

0 ≤ d ≤ a

a < d ≤ b

b < d ≤ c

c < d

Cauchy

dnoise > 0

d2noise
2

ln

(
1 + d2

d2noise

)
d

(
1 + d2

d2noise

)−1 (
1 + d2

d2noise

)−1

0 ≤ d

Tukey

dnoise > 0


1
6

(
1−

(
1− d2

d2noise

)3
)

1
6

d
(

1− d2

d2noise

)2

0


(

1− d2

d2noise

)2

0

0 ≤ d < dnoise

dnoise ≤ d

y‖)dF in the continuous case.

IF (x′, T, X̃) = lim
t↓0

y′ − y
t

= lim
t↓0

(1−t)Wyy+tf(ux′ )x
′

(1−t)Wy+tf(ux′ )
− y

t

= lim
t↓0

f(ux′)
Wy + tf(ux′)− tWy

(x′ − y)

=
f(ux′)
Wy

(x′ − y) =
wx′

Wy
(x′ − y). (17)

The fuzzified membership value f(ux′) or the weight wx′ respectively only depend on the distance
between x′ and y, where Wy is a positive, but fixed value. As Equation (17) shows, in a 1-
dimensional environment (x′ − y) = dx′ , hence the influence function is proportional to the ψ
function with IF = ψ

Wy
. The plots for ψFCM (ω = 2) and ψPFCM (β = 0.2) are shown in Figure

3, with dnoise = 0.2.
From the loss function ψ, the robust parameters gross error sensitivity γ∗, local shift sensitivity

λ∗ and the rejection point p∗ can be computed. For this analysis, only the 1-dimensional case
is considered and the robust parameters are calculated depending on the distance of to the
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Figure 3. The influence function for the FCM M-E (left) and the FCM M-E (right).

prototype: d = ‖x′ − y‖. It is immediately clear that the PFCM M-estimator has a finite
rejection point p∗PFCM =

√
d2

noise
1
β while the rejection point of the FCM M-estimator is infinite.

The gross error sensitivity for FCM γ∗FCM is achieved at a distance of dγ∗FCM
= dnoise

(
ω−1
ω+1

)ω−1
2

from which follows that

γ∗FCM =
dnoise

Wy
(2ω)−ω(ω − 1)

ω−1
2 (ω + 1)

ω+1
2 . (18)

The gross error sensitivity for the PFCM M-estimator can only occur if β ≤ d2

d2noise
≤ 1

β holds. If

β > d2

d2noise
, the influence function is linear which means the supremum is at β = d2

d2noise
and in case

of d2

d2noise
> 1

β , the influence function is constantly zero. Calculating the gross error sensitivity for

the PFCM M-estimator leads to a very complicated expression: d =
√

(1−β)2n4

A + A
β2 − n2 with

A =
(

2β6n6 + 4β5n6 + 2β4n6 +
(
5β12n12 + 22β11n12 + 39β10n12 + 36β9n12 + 19β8n12 + 6β7n12 + β6n12

) 1
2
) 1

3 . How-
ever, the gross error sensitivity is linear depending on dnoise and for β = 1

2 , dγ∗PFCM
≈ 0.51∗dnoise

so that γ∗PFCM ≈
0.793
Wy

dnoise.
The influence functions for FCM and PFCM are continuous and except for PFCM in d =√
βd2

noise and d =
√

1
βd

2
noise even smooth. Therefore and with the mean value theorem, the local

shift sensitivity λ∗ can be largely computed using the derivation of the influence function

λ∗ = sup
x6=x′

∣∣∣∣IF (x, T, F )− IF (x′, T, F )
x− x′

∣∣∣∣ = sup
x∈V

∣∣∣∣ ∂∂xIF (x, T, F )
∣∣∣∣ .

It should be noted that for β = 1, the PFCM M-estimator turns into a crisp version of this
estimator with a discontinuity at d = dnoise. The same effect would occur for ω = 1. Both
discontinuity cases suggest that the local shift sensitivity can become very large for a small
ε > 0 and ω = 1 + ε as well as β = 1− ε respectively. With a proper use of the parameter, the
local shift sensitivity λ∗ is bounded and fairly small for both M-estimators.

The breakdown point however depends very much on the initialization of the prototype for
the PFCM and FCM M-estimator. The initialization process is not discussed, so the breakdown
point can not be finally specified. A good choice is the multidimensional median or an initializa-
tion due to data structure knowledge which initializes the prototype in a useful position. Given
a useful initialization, the PFCM M-estimator has a breakdown point of 0.5 because of the finite
rejection point. In case of FCM, for ω < 2 [5], also the FCM M-estimator has a breakdown
point of 0.5.

All other algorithms in Table 1, except the mean, have a breakdown point of 0.5, but their
other properties differ. Only Hampels M-E and Tukeys biweight have a finite rejection point.
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Also the gross error sensitivity of FCM and PFCM M-estimator is linear dependent on dnoise, as
it is the case for Cauchys M-estimator and Tukeys biweight. In all cases, the influence function is
smooth and therefore, the local shift sensitivity is bounded and for reasonable parameter choices
fairly small.

5. Fuzzy clustering approaches induces by M-estimators

The extension of M-estimators of location to the case with more than one location, like in
fuzzy clustering is not a trivial task. Frigui and Krishnapuram made a nice proposal in [10] by
introducing RPC, a clustering algorithm with robust loss functions. However, the use of loss
functions, wrapped around the distance is quite limited because the derivative of the objective
function must be solvable for the prototypes positions yi. Therefore, the objective function

JRPC(X,U ,Y ) =
c∑
i=1

n∑
j=1

uωijρ(d2
ij)

does not provide the desired effect.
A different attempt how an M-estimator can be extended to multiple prototypes without

loosing the characteristics of the original M-estimator is presented here. This attempt should
not suffer the same problems as the RPC approach and is therefore not based on an objec-
tive function. The idea is basically to use the robust weights of prototypes independently as
fuzzy membership values. To avoid a clustering algorithm with independent prototypes, the
membership values are normalized to create a clustering algorithm, similar to FCM.

Let f be the fuzzifier function for a fuzzy clustering algorithm as in Equation (8). In a fuzzy
algorithm, the sum of membership values is equal to 1. However, the membership values are
implicitly determined by the prototypes, the update process just requires the fuzzified member-
ship values (see Equations (2) and (8)). This fact is important since a function like f is usually
not specified for M-estimators: wj = w(dj) = f(uj) for a data object xj in a fuzzy clustering
algorithm. The membership value uj can also be considered to be a function of dj , uj = u(dj)
while the function u depends on the fuzzy clustering algorithm: f(u(dj)) = w(dj). The prob-
lem is, that there is no distinct equation for uj , if considering an M-estimator. Therefore, the
condition of

∑
j uj = 1 is hard to specify.

If going from one prototype to many prototypes considering, f(u(dij)) = w(dij), the result is
a clustering algorithm with c independent prototypes. This is not very convenient since it makes
the clustering result extremely dependent on the initialization, much like PCM. Therefore, an
interdependence among prototypes is necessary to create a reasonable well working clustering
algorithm. One way of creating an interdependence is, to normalise the membership values. Let
dij be the distance from prototype yi to data object xj and wij = w(dij) be one of the weight
functions from table 1. Let the normalization g : [0, 1] → [0, 1] be a monotonously increasing
function with g(0) = 0. In the remaining part of this section, several normalisation methods are
discussed for this scenario.

The first normalisation methods are very straight forward.

g1(wij) =
wij∑c
k=1wkj

and (19)

g2(wij) =
wij∑c
k=1wkj

· wij . (20)

.
g1 maps the weights on the [0, 1] interval in such a way, that the sum of all normalised weights

is 1. This is close to FCM, but it does not fit for the robust weight calculation because for some
algorithms, the weights can become zero. If all weights but one are zero, the normalisation of
a non-zero weight is set to 1, which is not very robust as figure 4-left indicates for Hampel’s
M-estimator. This problem not only holds for Hampel’s M-estimator, but also for Tukeys and
the PFCM M-estimator since both can produce 0 weights. The scenario presented in figure 4
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Figure 4. The effect of normalisation g1 (left) and g2 (right) on Hampel’s M-estimator.

Figure 5. The effect of g3 on the FCM M-estimator (left) and the PFCM M-
estimator (right).

Figure 6. The effect of g3 on Hampel’s M-estimator (left) and Hubert’s M-
estimator (right).

is the same as in figure 1 and 2. Three prototypes are placed at 0.2, 1.0 and 1.2 in an one
dimensional environment. The weights from Hampel’s M-estimator are normalised according to
Equation (19) for the left hand side.
g2 overcome the problem of g1 by multiplying the original weight on the normalised value of

g1. This takes the actual robustness of the weight into account. Figure 4-right already indicates
to the problem in the area of prototype 2 and 3. The normalized weight values overlap very
much which which is not good because data objects in this area have a strong influence on
both prototypes. The prototypes tend to go on the same position because data objects in the
overlapping area have a strong influence on both. Having two or more prototypes covering
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Figure 7. The effect of g3 on Cauchy’s M-estimator (left) and Tukeys M-
estimator (right).

one cluster usually means that at least one other cluster is uncovered, which is quite bad for a
clustering algorithm. The same holds for all six weight functions, presented in table 1.

In FCM as well as in PFCM, close prototypes are pulled apart from the surrounding data
objects. This comes from the inverted mean in FCM and PFCM of the form

uij =

1
d2ij∑n
k=1

1
d2kj

.

which gives data objects close to an other prototype a membership value of almost 0. As this
kind of mean is missing in the two presented normalisation methods, close prototypes are not
well separated. Therefore, the third normalisation maps the weights from [0, 1] to [0,∞) in order
to get a more sophisticated mean.

g3(wij) =
1

1−wij∑c
k=1

1
1−wkj

· wij . (21)

g3 reduces the problem, that two prototypes run into the same location. However, there are
situations where this happens. If Huber’s, Hampel’s or the PFCM M-estimator is used, areas of
weight 1 appear. In this case, it is not clear how the data objects are partitioned. This situation
can be solved by giving all membership values the same normalised weight. If at least one weight
is equal to 1, let c̄ = |{wij : wij = 1, i = 1 . . . c}| be the number of weights of value 1.

g3(wij) =
{

0 if wij < 1
1
c̄ if wij = 1

With normalisation g3, the M-estimator induced clustering algorithms work quite well, see fig-
ure 6 for Hamels M-estimator. The FCM and PFCM algorithm give a nice insight about the
difference in the presented M-estimators and their original fuzzy clustering algorithms. The ex-
tended FCM induced M-estimator, presented in figure 5-left is best to be compared with figure
1-right, when the presentation of the noise cluster is ignored. The fuzzified membership values
in figure 5 and the normalised weight values in figure 1 show almost an identical profile. PFCM
with noise and the extended PFCM induced M-estimator, presented in figure 2-right and 5-right
respectively are also very similar. The obvious difference is in between prototype 2 and 3 where
the original PFCM provides a better, fuzzy, transfer of membership values. Also the extended
PFCM M-estimator is a little bit steeper than the PFCM algorithm with noise.

The only common problem for weight functions that allow strictly 0 values is, that their
prototype is initialised to far away from any data object. This causes the prototype to be
’empty’ which makes it impossible to move into a useful direction. Observe figures 8, 9 and
10 for examples of the proposed extended M-estimators. The ’tails’ of the prototypes represent
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Figure 8. Extended FCM M-E (left) and extended PFCM M-E (right) applied
on a artificial data set.

the way the prototypes took from their initialisation position to their final position. Noise data
objects are presented black while the color intensity of a data object refers to the value of the
normalised

The Huber Estimator does not work well because the influence of a data object increases lin-
early with its distance while the weight of the Huber M-estimator decreases anti-linear ( 1

distance).
Therefore, nearby data objects are not favoured against far away data objects, so the prototypes
tend to go into the centre of gravity of the data set. This is usually not a problem in a one-
cluster scenario with a small percentage of noise. But with many clusters in a data set, and one
prototype should cover just one cluster, most data objects are considered to be noise for this
one cluster. In this case, a finite rejection point or fast decreasing weight function would help.

The extended FCM M-E algorithm performs very well as does the extended M-E of Cauchy
and Hampel in the example, presented in figure 9. The extended M-E of Cauchy however has
in general similar problems like Hubers extended M-E but they do not occur as often. The
prototypes of the extended Cauchy M-E tend to run into the centre of gravity and they do not
find the centre of Clusters as good as for example the extended FCM M-E, the prototypes are
always slightly drawn to the centre of the data set.

The extended Tukey M-E as well as the extended PFCM M-E both have problems finding the
final cluster in this example since their remaining prototype is too far away and the membership
values of all ”good” cluster data objects are 0 or extremely small. This might be a matter of
choosing the correct parameter, but the parameter should allow the algorithm to represent the
”good” data as well as possible. The parameter should not be chosen in a way that the area with
represented weight 1 is larger than the cluster itself in order to make the algorithm working. In
a one cluster environment, the (multidimensional) median is usually a good initialisation which
is not the case for many clusters.

6. Conclusions

Fuzzy set theory had a great impact on data mining, clustering in particular. In this paper, we
have explored the connection of fuzzy c-means and hard c-means clustering, as well as statistical
motivated M-estimators. Although these many methods are not identical, many have similar
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Figure 9. Extended Cauchy M-E (left) and extended Hampel M-E (right) ap-
plied on a artificial data set.

Figure 10. Extended Huber M-E (left) and extended Tukey M-E (right) applied
on a artificial data set.

properties. The newly introduced PFCM M-estimator has similar properties to well known M-
estimators for example Hampel’s M-estimator. It is based on its fuzzy version and has all its
stability properties and shares the same problems with local optimal solutions. Naturally, the
PFCM M-estimator has other robustness properties than the FCM M-estimator because the
PFCM M-E has a finite rejection point which is not the case for the FCM M-E.

Because M-estimators target a more simple problem than clustering algorithms, the transition
from M-estimators to multi-cluster problems is more complicated. We present an attempt to do
so by introducing a clever normalization method. The results are very promising but there is
still potential for improvements. Especially because some extended M-estimators do not perform
well. One of the main problems is, that some prototypes do not find ”good” data because their
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radius of rejection is too small. An other problem is, that for close enough prototypes, they
can move together on the same location if their weight functions form a plateau of constant
values near the prototypes. Also some extended M-estimators like Huber’s and Cauchy’s have
problems with rejecting far away data objects, hence they tend to end up in the centre of gravity
of the data set. It might be possible to improve the performance by using a better normalisation
or to find a more natural way of extending the weight functions. The fuzzy-clustering induced
M-estimator weights however perform quite well.

References

[1] Albert E. Beaton and John W. Tukey. The fitting of power series, meaning polynomials, illustrated on
band-spectroscopic data. Technometrics, 16(2):147–185, 1974.

[2] James C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York,
1981.

[3] Rajesh N. Dave. Characterization and detection of noise in clustering. Pattern Recogn. Lett., 12(11):657–664,
1991.

[4] R.N. Dave and R. Krishnapuram. M-estimators and robust fuzzy clustering. In Fuzzy Information Processing
Society, 1996. NAFIPS. 1996 Biennial Conference of the North American, pages 400–404, Jun 1996.

[5] R.N. Dave and R. Krishnapuram. Robust clustering methods: a unified view. Fuzzy Systems, IEEE Trans-
actions on, 5(2):270–293, May 1997.

[6] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em
algorithm. Journal of the Rozal Statistical Society, Ser. B, 39(1):1–38, 1977.

[7] J.C. Dunn. A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters.
Cybernetics and Systems: An International Journal, 3(3):32–57, 1973.

[8] Fisher. Theory of statistical estimation. In Proc. Cambridge Philosophical Society, volume 22, pages 700–725.
Cambridge University Press, Cambridge, 1925.

[9] R. A. Fisher. On an absolute criterion for fitting frequency curves. Messenger of Mathematics, 41:155160,
1912.

[10] Hichem Frigui and Raghu Krishnapuram. A robust algorithm for automatic extraction of an unknown number
of clusters from noisy data. Pattern Recognition Letters, 17(12):1223 – 1232, 1996.

[11] Frank R. Hampel, Elvezio M. Ronchetti, Peter J. Rousseeuw, and Werner A. Stahel. Robust Statistics: The
Approach Based on Influence Functions. Wiley-Interscience, New York, revised edition, April 2005.

[12] Peter J. Huber. Robust statistics. Wiley, 1981.
[13] P.J. Huber. Robust estimation of a location parameter. Annals of Mathematical Statistics, 35(1):73–101,

1964.
[14] Frank Klawonn. Fuzzy clustering: insights and a new approach. Mathware and Soft Computing, 11:125–142,

2004.
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