
M-Estimator induced Fuzzy Clustering
Algorithms

Roland Winkler1 Frank Klawonn2 Rudolf Kruse3

1German Aerospace Center (DLR) Braunschweig, roland.winkler@dlr.de
2Ostfalia University of Applied Sciences Wolfenbüttel, f.klawonn@ostfalia.de
3Otto-von-Guericke University Magdeburg, kruse@iws.cs.uni-magdeburg.de

Abstract

M-estimators can be seen as a special case of robust
clustering algorithms. In this paper, we present the
reversed direction and show that clustering algo-
rithms can be constructed by using M-estimators.
A clever normalization is used to link the values
of several M-estimator prototypes together in one
clustering algorithm. A variety of M-estimators and
several normalization strategies are used in 4 data
sets to present their differences and properties. The
results are evaluated using 5 different clustering val-
idation indices.

Keywords: Fuzzy c-means, M-estimators, Robust
statistics, Noise clustering, Multiple prototypes

1. Introduction

Fuzzy clustering [1, 2] and M-estimators [3, 4] of
location have roughly the same goal. For both, it
is assumed that the data is somehow contaminated
with noise and/or data objects can not be uniquely
assigned. The difference however is, for fuzzy clus-
tering, it is assumed that a set of different data gen-
erating processes are responsible for the observed
data set. M-estimators of location just assume one,
(contaminated) data generating process. The way
from fuzzy clustering to M-estimators is possible,
because fuzzy clustering algorithms contain the case
of just one data generating process (one prototype)
as a special case. The other direction however, to
extend M-estimators to handle more than one pro-
totype, is much more difficult. The start position
is given by the update mechanisms of both algo-
rithm classes since the update process of fuzzy clus-
tering algorithms is very similar to M-estimators.
For usual fuzzy clustering algorithms, this update
process is derived from the definition of an objec-
tive function that is optimized by gradient descent.
This gradient descent method can be altered to form
a new clustering algorithm that must not neces-
sarily be derived from an objective function. The
usual process of fuzzy clustering algorithms applies
weights on data objects. These weights are defined
by characteristic functions for each fuzzy clustering
algorithm. M-estimators also contain weights for
data objects. In this paper, we demonstrate that a
clever normalisation process can use these weights

to form a clustering algorithm update process, that
is similar to a fuzzy clustering algorithm and sup-
ports multiple prototypes.

1.1. Related Work

The famous noise clustering [5] algorithm is a very
effective extension to Fuzzy c-Means (FCM) [6, 7]as
it provides robustness properties to FCM. Davé and
Krishnapuram present an M-estimator [8, 4] that
behaves like noise clustering in combination with
FCM if only a single “normal” cluster is applied.
This connection is again emphasized in [9]. Davé
and Sen introduced in [10] a noise clustering al-
gorithm that uses a unique noise distance for each
data object. This fuzzy clustering algorithm is very
close to possibilistic clustering and also closer to
M-Estimators than the original noise clustering al-
gorithm. Keller has introduced a modified FCM
algorithm in [11] that introduces a weight for each
data object. The weight serves as a parameter that
generates similar to the fuzzifier the importance of
a data object. Noise data objects are identified by a
low weight which increases the robustness of FCM
with respect to outliers. A different robust FCM al-
gorithm is introduced by Kim, Krishnapuram and
Davé [12] which uses a least trimmed squares mea-
sure instead of the usual least squares approach for
FCM. In their approach, they reformulate FCM to
gain a representation based on a harmonic mean
value that is trimmed to eliminate the influence of
outliers.

Noise clustering is a good way to reduce the influ-
ence of noise or corrupted data on the ”good” clus-
ter. Klawonn and Höppner introduced an alterna-
tive approach using a polynomial fuzzifier function
instead of the usual exponential fuzzifier [13, 14]
which effectively reduces the influence of noise
points, no matter how far they are away from the
“good” clusters. Their approach can be seen as a
convex combination of hard c-means [15] and FCM
with a fuzzifier of 2 and leads to fuzzy membership
values as well as strict values of 1 and 0. More infor-
mation about this concept is provided in [16, 14, 17].
A similar approach is discussed by J. Leski in [18].
His approach is to robustify FCM by applying an ε-
norm where every distance below ε is set to 0. This
norm was first introduced by Vapnik [19] to create
an ε-insensitive estimator.

EUSFLAT-LFA 2011 July 2011 Aix-les-Bains, France

© 2011. The authors - Published by Atlantis Press 298

The basis for the robust statistics is discussed in
[3, 4]. Especially the introduction of the influence
function by Hampel in [8] is very helpful. Further
interesting work on robustness is done by Hennig,
for example in [20, 21, 22]. He deals with measur-
ing the robustness not only of the used method but
also as a property of the cluster in question. His
method is rather algorithm independent and com-
parable for several algorithms if the algorithm’s re-
sult is a hard partitioning of the data. Also Choi
and Krishnapuram have published a paper in [23]
that links clustering and M-estimators. A more ap-
plication oriented paper was published by Lozeron
and Victoria-Feser that is related to M-estimators
in [24].

An interesting alternative to noise clustering is
presented by Frigui and Krisnapuram in [25] by
using the robust prototype clustering (RPC) algo-
rithm to handle noise data objects. RPC basically
works the same way as for M-estimators: a ro-
bust loss function is wrapped around the distance
measure in an FCM like objective function. How-
ever, the choice of this loss function is very limited
since only functions can be used that allow for an
closed-form solution for the prototype based on the
derivative. Frigui and Krisnapuram also introduced
an algorithm called (robust) competitive agglomer-
ation clustering [26, 27]((R)CAFCM) which is able
to identify noise data objects as well as other pa-
rameters of FCM like the number of clusters in a
data set. The robust version of CAFCM again has
a wrapped loss function around the distance value
the same way it is done for RPC.

1.2. Overview

In the next section, the basics regarding fuzzy c-
means clustering and M-estimators are introduced.
Also the 4 in the experiments in Section 4 used M-
estimators are presented. In Section 3, a fusion of
the M-estimator robustness concept is extended to
a multi-prototype clustering algorithm. Finally, the
conclusions in Section 5 are followed by the used
references.

2. Fuzzy c-Means, NC and M-Estimators

2.1. Fuzzy c-Means

Although fuzzy c-means (FCM) and noise cluster-
ing (NC) are very well known, some mathematical
details are needed in the next section. Let X ⊂ V
be a finite set of data objects of a vector space V
with |X| = n. The clusters are represented by a set
of prototypes Y = {y1, . . . , yc} ⊂ V which can be
initialized randomly, only the number of prototypes
c must be known in advance. Let 1 < ω ∈ R be the
fuzzifier and U ∈ Rc×n be the partition matrix with
uij ∈ [0, 1] and ∀j :

∑c
i=1 uij = 1. And finally, let

d : V × V −→ R be a distance function with its ab-
breviation dij = d(yi, xj) and fFCM be the fuzzifier

function fFCM(u) = uω.
Fuzzy c-means clustering is based on an objective

function J that is to be minimized:

JFCM =
c∑
i=1

n∑
j=1

fFCM(uij)d2
ij (1)

The minimization of J is done by iteratively up-
dating the members of U and Y and is computed
using a Lagrange extension to ensure the constraints∑c
i=1 uij = 1. The iteration steps are denoted by a

time variable t ∈ N denoting t = 0 as the initializa-
tion step:

ut+1
ij

FCM=
(dtij)

2
1−ω

c∑
k=1

(
(dtkj)

2
1−ω

) and

yt+1
i

FCM=

n∑
j=1

fFCM
(
utij
)
· xj

n∑
j=1

fFCM
(
utij
) (2)

For noise clustering, an additional cluster is speci-
fied which is represented by a virtual prototype y0
which has no location in V . Instead, it has a con-
stant distance 0 < dnoise ∈ R to all data objects:
∀j : d0j = d(y0, xj) = dnoise which is called noise
distance. y0 is not represented as a member of V ,
which means, it is not updated during the iteration
process. However, the membership values are up-
dated as if y0 was a normal prototype. The noise
prototype is introduced to assign higher member-
ship degrees to the noise cluster for all data ob-
jects whose distance to regular prototypes exceeds
the noise distance. This favours regular prototypes
to be better placed in the center of data clusters
without being attracted by noise data. Also it sup-
presses the unwanted effect that membership values
converge to 1

c for data objects far away from all nor-
mal prototypes.

2.2. M-estimators

M-estimators (M-E) are based on the idea of max-
imum likelihood estimation (MLE). MLE [28] is a
method to find the parameters of a statistical model
in such a way that it becomes maximal likely to ob-
serve the given data set. This proposition already
contains the greatest weakness of this method: the
data generating process must be known in order to
choose the correct model. If the model is chosen
(even slightly wrong), no parameter optimization
can generate a meaningful result. Often, the cor-
rect model is not known or the data set contains
outliers that make it impossible to estimate the cor-
rect parameters even if the underlying model might
be correct. M-estimators are designed in such a
way that they still produce meaningful results, even
if the model assumption is not correct or the data
contains outliers. MLE is usually performed using
the expectation maximization (EM) algorithm [29].

299

The EM algorithm is based on an objective func-
tion as FCM but with a statistical background. As
for FCM, let there be c clusters and X be the data
set. Consider the random variable X̃ : Ω→ V that
has the data space as domain and let fX̃ :X×Θ→
R be its probability density function that depends
on some parameter set Θ ∈ Θ. The underlying
model assumption is done by choosing the kind of
density function fX̃ . The likelihood of observing
the data set is specified by the likelihood function

JMLE =
n∏
j=1

fX̃(xj ,Θ),

which plays the role of the objective function for
FCM but in this case, must be maximized. For com-
putational properties, the negative log-likelihood of
the data set is optimized instead of the likelihood.

− lnJMLE =
n∑
j=1
− ln fX̃(xj ,Θ),

which in turn must be minimized. The new min-
imum is located at the same place as the maxi-
mum of the likelihood function because the nega-
tive logarithm is a strictly decreasing function. Nor-
mal statistical functions like normal distributions or
even mixtures of normal distributions are very of-
ten used. Single outliers can cause significant dam-
age to the parameter estimation, not only for nor-
mal distributions. Therefore, in robust statistics
the model is replaced by a robust loss function ρ
that is not necessarily based on a probability den-
sity function ρ(xj ,Θ) = − ln fX̃(xj ,Θ). Therefore,
Θ = y is interpreted as prototype, y ∈ Y and the
function g(x, y) = ρ(‖x−y‖) is interpreted as a loss
function ρ : R→ R that takes the distance ‖x− y‖
as an argument with ‖ · ‖ as the Euclidean distance.
Finally, the M-estimator (maximum-likelihood-type
estimator) is an optimization problem that is based
on minimizing the following objective function:

JM-E =
n∑
j=1

ρ(dj),

with dj = ‖xj − y‖. For a local minimum, a
necessary condition is, that the derivative is zero.
Usually, it is not possible to calculate a global mini-
mum for this objective function directly. Therefore,
similar to FCM, an iterative update process is used.
Let ψ(dj) = ψ(‖xj − y‖) = ∂

∂yρ(‖xj − y‖) be the
derivative of ρ and wj = w(dj) = ψ(dj)

dj
. The opti-

mization criterion is:

0 =
n∑
j=1

ψ(dj) ·
∂

∂y
dj = 2

n∑
j=1

wj · (xj − y). (3)

This holds, because dj has been defined as the Eu-
clidean distance:

dj · ∂∂ydj = ‖xj − y‖ · ∂∂y‖xj − y‖ = 1
2
∂
∂y‖xj − y‖

2 =
(y−xj). From Equation (3) follows by rearranging:

y =
∑n
j=1 wjxj∑n
j=1 wj

. (4)

Thus, y is the weighted mean of the data set where
the weights in turn depend on y in relation to the
data objects. This provides an iterative update
process for M-estimators. The equation looks very
much like the update equation for FCM in (2), if the
term wj is replaced by fFCM(uij). Or more gener-
aly,

yt+1 =
∑n
j=1 f(utj)xj∑n
j=1 f(utj)

. (5)

with f(u) is either a fuzzifier function fFCM(u) or a
robust weight function w of an M-estimator.

Later, some M-estimators are applied into the
new, multi-prototype algorithm. Table 1 the M-
estimators that are used this paper are listed.

Table 1: Several M-Estimators
Function
and its

Parameters

Weight function
w(d)

Parameter
Range

Huber
dnoise > 0

{
1
dnoise
d

0 ≤ d < dnoise
d ≥ dnoise

Hampel

0 < a ≤
b ≤ c a1 =
ab− 1

2a
2

a2 =
a
2 (c− b)

1
a
d

a
d

(
c−d
c−b

)
0

0≤ d≤ a
a<d≤ b

b <d≤ c

c <d

Cauchy
dnoise > 0

(
1 + d2

d2
noise

)−1
0 ≤ d

Tukey
dnoise > 0

{(
1− d2

d2
noise

)2

0
0 ≤ d < dnoise

dnoise ≤ d

3. Fuzzy clustering approaches induces by
M-estimators

The extension of M-estimators of location to the
multi-prototype case, like in fuzzy clustering is not
a trivial task. Frigui and Krishnapuram made a nice
proposal in [25] by introducing RPC, a clustering
algorithm with robust loss functions. However, the
use of loss functions, wrapped around the distance
is quite limited because the derivative of the objec-
tive function must be solvable for the prototypes
positions yi. Therefore, the objective function

JRPC =
c∑
i=1

n∑
j=1

uωijρ(d2
ij)

300

can not be used with most M-estimators.
A different attempt how an M-estimator can be

extended to multiple prototypes without loosing the
characteristics of the original M-estimator is pre-
sented here. This attempt should not suffer the
same problems as the RPC approach and is there-
fore not based on an objective function. The idea is
basically to use the robust weights of prototypes in-
dependently as fuzzy membership values. To avoid
a clustering algorithm with independent prototypes,
the membership values are normalized to create a
clustering algorithm, similar to FCM.

Let f be the fuzzifier function for a fuzzy cluster-
ing algorithm as in Equation (5). In a fuzzy algo-
rithm, the sum of membership values is equal to 1.
However, the membership values are implicitly de-
termined, the update process just requires the fuzzi-
fied membership values (see Equation (5)). This
fact is important since a membership value is usu-
ally not specified for M-estimators: wj = w(dj) =
f(uj) for a data object xj in a fuzzy clustering algo-
rithm. The membership value uj can also be con-
sidered to be a function of dj , uj = u(dj) while
the function u depends on the fuzzy clustering al-
gorithm: f(u(dj)) = w(dj). The problem is, that
there is no distinct equation for uj , if considering an
M-estimator. Therefore, the condition of

∑
j uj = 1

is hard to specify.
If going from one prototype to many prototypes

considering, f(u(dij)) = w(dij), the result is a
clustering algorithm with c independent prototypes.
This is not very convenient since it makes the clus-
tering result extremely dependent on the initial-
ization, much like PCM. Therefore, an interdepen-
dence among prototypes is necessary to create a rea-
sonable well working clustering algorithm. One way
of creating an interdependence is, to normalise the
membership values. Let dij be the distance from
prototype yi to data object xj and wij = w(dij) be
a M-estimator weight function. Let the normaliza-
tion g : [0, 1]→ [0, 1] be a monotonously increasing
function with g(0) = 0. Than the following equation
describes the update mechanism of an M-estimator
induced fuzzy clustering algorithm:

ut+1
ij = g(wij) = g(w(dij)) (6)

with wij is an M-estimator weight function as in
table 1. In the remaining part of this section, sev-
eral normalisation methods are discussed for this
scenario.
The first normalisation methods are very straight

forward.

g1(wij) = wij∑c
k=1 wkj

and (7)

g2(wij) = wij∑c
k=1 wkj

· wij . (8)

g1 maps the weights on the [0, 1] interval in such
a way, that the sum of all normalised weights is
1. This is close to FCM, but it does not fit for

the robust weight calculation because for some algo-
rithms, the weights can become zero. If all weights
but one are zero, the normalisation of a non-zero
weight is set to 1, which is not a very robust feature.
This problem is present for Hampel’s and Tukeys
M-estimator since both can produce 0 weights. g2
overcome the problem of g1 by multiplying the origi-
nal weight on the normalised value of g1. This takes
the actual robustness of the weight into account.

In FCM as well as in PFCM, close prototypes
are pulled apart from the surrounding data objects.
This comes from the harmonic mean in FCM (and
similar in PFCM) of the form

uij =
1
d2
ij∑n

k=1
1
d2
kj

.

which gives data objects close to an other prototype
a membership value of almost 0. As this kind of
mean is missing in the two presented normalisation
methods, close prototypes do not have the tendency
to move apart. Therefore, the third normalisation
maps the weights from [0, 1] to [0,∞) in order to
get a more sophisticated mean.

g′3(wij) =
1

1−wij∑c
k=1

1
1−wkj

· wij . (9)

g′3 reduces the problem, that two prototypes run
into the same location. However, there are situa-
tions where this happens. If Huber’s or Hampel’s
M-estimator is used, areas of weight 1 appear near
their prototype. In this case, it is not clear how
the data objects are partitioned. The situation can
be solved by giving all membership values the same
normalised weight. Let ĉ = |{wkj : wkj = 1, k =
1 . . . c}| be the number of weights of value 1.

g3(wij) =

 g′3(wij) if ĉ = 0
0 if ĉ > 0 and wij < 1
1
ĉ if ĉ > 0 and wij = 1

With normalisation g3, the M-estimator induced
clustering algorithms work quite well. However, the
results are not very good if the areas of weight 1 are
large and overlapping. Yet an other normalization
avoids that problem by taking the relative distance
of all prototypes with weight 1 into account:

g4(wij) =

g′3(wij) if ĉ = 0
0 if ĉ > 1 and wij < 1

dij
c∑
k=1
wkj=1

dkj

if ĉ > 1 and wij = 1

The only common problem for weight functions
that allow strictly 0 values is, that their prototype
is initialised to far away from any data object. This
causes the prototype to be ’empty’ which makes it
impossible to move into a useful direction. But this
problem is a tribute to a finite rejection point. See

301

the next section for more detail of the usefulness of
finite rejection points.
As of now, there is no noise cluster introduced.

This is unnecessary during the clustering process
as the robust properties of the weight functions do
not require a noise cluster. However, for evaluation,
the noise cluster is important. For all normalization
functions holds, that the sum of membership values
for one data object is ≤ 1. The noise membership
value is simply determined by 1 −

c∑
i=1

wij. Hence

there are c+ 1 membership values in consideration.

4. Experiments

In this section, the four M-estimator weight func-
tions from table 1 are applied on four different data
sets. The well known iris data set [30] as well as
the wine data set [31] provide a relative easy clus-
tering task. The third data set is the shuttle data
set, also from the UCI data base. The shuttle data
set is very imbalanced and provides a complex, mul-
tidimensional structure that is hard to cluster. We
test the quality of the clusterings with several differ-
ent cluster validity indices: The normalized parti-
tion coefficient (NPC), the Bezdek Seperation index
(BSI), Davies-Bouldin index (DBI), Xie-Beni Index
(XBI) and the value of a virtual objective function
(OFV) given by equation (1). All indices are imple-
mented using the equations from [16], chapter 7.

Table 2: Validity values of the iris data set
Index NPC BSI DBI XBI OFV
Quality > < < < <
Huber 2.90 0.293 2.44 0.147 160
Hampel 2.75 0.227 5.54 0.33 182
Cauchy 1.70 0.187 4.68 0.248 614
Tukey 2.00 0.173 4.83 0.495 743

Table 3: Validity values of the iris data set wine
data set
Index NPC BSI DBI XBI OFV
Quality > < < < <
Huber 2.75 0.416 3.95 0.163 1275
Hampel 2.80 0.412 4.20 0.209 1634
Cauchy 1.55 0.474 3.92 0.15 1430
Tukey 2.60 0.245 6.27 1.23 2432

For the iris and wine data set, all M-estimators
are applied, using g3 as normalization. See table
2 for details, the ’quality’ entry shows which direc-
tion of values is better (< means smaller values are
better). Only the NPC value is better if larger, all
other are indices to be minimized.
The Hubers M-estimator works surprisingly well

in these examples. However, it is very difficult to
set up. Even though it knows only one parameter,
it is very sensitive to it.

The Hampel M-estimator performed quite well
with relative ease. However, it is hard to optimize
as it has three parameter to be set and it is hard to
find the optimal combination. A visual examination
also showed that the Hampel M-estimator induced
clusterer performed best.

On the wine dataset (table 3), the Cauchy M-
estimator did not work well. The prototypes were
not well separated and also were unable to aquire
full membership value. Maybe, the parameter value
was wrong, but we tried a large variety of values
and none of them yielded good results. So in the
wine data set the Cauchy clusterer shows a trivial
solution. Due to the influence of the noise cluster,
the validity values are still quite reasonable.

The third example set is a very hard clustering
task compared to the other two. During its execu-
tion, the robust nature of the clustering algorithms
clearly showed. For this test, we changed the orig-
inal objective of the clustering data set. Visual ex-
amination showed that there are around 8 clusters
that are spatially separated from each other. How-
ever, they are very different populated, almost 80%
of all data objects are contained in one main cluster.
For this data set, it is important that the clusterer
find the small satellite clusters.

Table 4: Validity values of the shuttle data set
Index NPC BSI DBI XBI OFV
Quality > < < < <
Huber 5.43 0.118 5.38 0.278 18000
Hampel 4.41 0.105 5.28 0.949 37500
Cauchy 3.85 0.364 5.04 0.247 16500
Tukey 3.06 0.155 4.24 0.441 26000

The normalization method had huge influence on
the clustering quality. Because it worked best that
way, g4 was used for Huber and Hampel. Tukey
however, did not work well with g3 or g4, g1 was
used instead. In both cases (g3 and g4), all proto-
types clumped together at the point of highest den-
sity. This is very robust but unnecessary for clus-
tering algorithms as a good coverage of the data ob-
jects is important as well. g1 worked much better in
this regard. But even though, 2 of the 8 prototypes
were positioned well while the other 6 were still
placed at the location of highest density. Chang-
ing the dnoise0 parameter did not increase the qual-
ity. Cauchys M-estimator induced clusterer however
did not work on this data set. Independently from
the dnoise parameter and normalization method, all
prototypes clumped up in one location. When us-
ing g1, all data objects had an equal membership
value while in any other case almost all data objects
were placed into the noise cluster. Huber and Ham-
pels M-estimator performed reasonably well. Even
though, both did not find all small clusters, they
spread out quite well and covered most of the data
objects.

The last data set we apply the algorithms on is an

302

artificial data set. It contains 5 clusters Gaussian
distributed clusters in a 3 dimensional environment.
The clusters did not overlap which is why we used
g3 for Huber, Hampels and Tukeys M-estimator in-
duced clusterer. Again, Cauchys M-estimator in-
duced clusterer did not work well with g3 which is
why we used g2. See table 5 for details.

Table 5: Validity values of the artificial data set
Index NPC BSI DBI XBI OFV
Quality > < < < <
Huber 4.48 0.243 4.48 0.21 4043
Hampel 5.1 0.07 2.88 1.37 1586
Cauchy 2.49 0.226 3.11 0.157 4892
Tukey 4.49 0.247 4.34 0.1 5883

One effect that should be mentioned is, that
only Tukeys M-estimator induced clusterer found
all clusters. The other M-estimator induced clus-
terers missed one, which seems to be a common
problem with this approach. Although the test indi-
cates that Hampels M-estimator induced clusterer
might be performed best, Tukeys performed best.
As this might be a problem, it could potentially be
positive because prototypes that find the same clus-
ter tend to become identical. Such an event is easy
to detect and therefore, one of the identical proto-
types could be removed. If initialized with an over-
estimated number of prototypes, the M-estimator
induced clusterers could be able to estimate the
number of clusters. Further study is needed at this
point.

One additional remark is in order. The cluster
validation methods were not designed to handle a
noise cluster. But none of them requires a prototype
to work. Therefore, it is unproblematic to apply
them as if the noise cluster were a normal cluster.
But that also influences the quality measurement as
trivial solutions can be best in presence of a noise
cluster. If the noise cluster is removed from the clus-
tering process, the trivial solution to add all data
objects to the noise cluster is best for minimizing
one of the indices. But the same time, the values
are not very well comparable when using different
M-estimators as they require different noise distance
set-ups. The noise distance is differently interpreted
among the clusterers. Hubers M-estimator provides
a membership value of 1 until the distance is larger
than the noise distance. Tukeys M-estimator on the
other hand provides membership values of 0 if the
distance is larger than the noise distance. This alone
requires different noise distance parameters for the
same data set. This is also part of the reason why
the validation values are in favour of Hubers M-
estimator.

Performance and scalability of all M-estimator in-
duced clusterers is similar to noise FCM (NFCM)
as the basic structure is the same. However, it is
likely that for a high number of data object clouds,
the number of clusters entirely covered by the noise

cluster is higher than for NFCM. Also the number
of iterations might differ slightly.

5. Conclusions and future work

We showed in this paper, that it is possible to con-
struct a clustering with robust properties that is
based on M-estimators. In fact, the developed tem-
plate works with any M-estimator weight function.
However, the quality of the clustering process does
not only depend on the choice of the M-estimator.
The choice of the normalization process that links
the prototypes together is important as well. Maybe
there is one normalization process that provides a
good clustering in most cases. Finding a good nor-
malization that works in most of the cases is an
interesting problem for future work.

Apart from the algorithm it self, we evaluated
the clustering result using several validation indices.
We presented 3 examples and the usage of the vali-
dation index for all 4 M-estimator induced cluster-
ers. Even though the validation indices give an idea
about the quality of the clustering result, the dif-
ferent properties of the M-estimators makes them
hard to compare. A cluster validation index that
takes a noise cluster into account would be welcome
in this situation.

References

[1] James C. Bezdek, James M. Keller, Raghu Kr-
ishnapuram, and Nikhil R. Pal. Fuzzy Mod-
els and Algorithms for Pattern Recognition and
Image Processing. Kluwer Academic Publish-
ers, Boston, 1999.

[2] F. Höppner, F. Klawonn, R. Kruse, and
T. Runkler. Fuzzy Cluster Analysis. John Wi-
ley & Sons, Chichester, England, 1999.

[3] Colin Goodall. M-estimators of location: An
outline of the theory. In David C. Hoaglin,
Frederick Mosteller, and John W. Tukey, ed-
itors, Understanding robust and exploratory
data analysis, Wiley series in probability and
mathematical statistics, chapter 11, pages 339–
400. Wiley-Interscience, 1983.

[4] Peter J. Huber. Robust statistics. Wiley, 1981.
[5] Rajesh N. Dave. Characterization and detec-

tion of noise in clustering. Pattern Recogn.
Lett., 12(11):657–664, 1991.

[6] J.C. Dunn. A fuzzy relative of the isodata
process and its use in detecting compact well-
separated clusters. Cybernetics and Systems:
An International Journal, 3(3):32–57, 1973.

[7] James C. Bezdek. Pattern Recognition with
Fuzzy Objective Function Algorithms. Plenum
Press, New York, 1981.

[8] Frank R. Hampel, Elvezio M. Ronchetti, Pe-
ter J. Rousseeuw, and Werner A. Stahel. Ro-
bust Statistics: The Approach Based on Influ-

303

ence Functions. Wiley-Interscience, New York,
revised edition, April 2005.

[9] R.N. Dave and R. Krishnapuram. M-
estimators and robust fuzzy clustering. In
Fuzzy Information Processing Society, 1996.
NAFIPS. 1996 Biennial Conference of the
North American, pages 400–404, Jun 1996.

[10] R.N. Dave and S. Sen. Noise clustering algo-
rithm revisited. In Biennial Wrokshop of the
North American Fuzzy Information Processing
Society, pages 199–204, Sep 1997.

[11] A. Keller. Fuzzy clustering with outliers. In
Fuzzy Information Processing Society, 2000.
NAFIPS. 19th International Conference of the
North American, pages 143–147, 2000.

[12] Jongwoo Kim, Raghu Krishnapuram, and Ra-
jesh Davé. Application of the least trimmed
squares technique to prototype-based cluster-
ing. Pattern Recognition Letters, 17(6):633 –
641, 1996.

[13] Frank Klawonn and Frank Höppner. What
is fuzzy about fuzzy clustering? understand-
ing and improving the concept of the fuzzi-
fier. In Cryptographic Hardware and Embedded
Systems - CHES 2003, volume 2779 of Lec-
ture Notes in Computer Science, pages 254–
264. Springer Berlin / Heidelberg, 2003.

[14] Frank Klawonn and Frank Höppner. Fuzzy
cluster analysis from the viewpoint of robust
statistics. In Views on Fuzzy Sets and Sys-
tems from Different Perspectives, volume 243
of Studies in Fuzziness and Soft Computing,
pages 439–455. Springer Berlin / Heidelberg,
2009.

[15] J. B. MacQueen. Some methods for classi-
fication and analysis of multivariate observa-
tions. In Proc. of the fifth Berkeley Symposium
on Mathematical Statistics and Probability, vol-
ume 1, pages 281–297. University of California
Press, 1967.

[16] Christian Borgelt. Prototype-based Clas-
sification and Clustering (Habilitationss-
chrift). PhD thesis, Otto-von-Guericke-
University of Magdeburg, Germany, 2005.
http://www.borgelt.net/habil.html.

[17] Frank Klawonn and Frank Höppner. An alter-
native approach to the fuzzifier in fuzzy cluster-
ing to obtain better clustering. In EUSFLAT
Conf., pages 730–734, 2003.

[18] Jacek Leski. Towards a robust fuzzy clustering.
Fuzzy Sets and Systems, 137:215–233(19), 16
July 2003.

[19] Vladimir N. Vapnik. The nature of statisti-
cal learning theory. Springer-Verlag New York,
Inc., New York, NY, USA, 1995.

[20] C. Hennig. Dissolution and isolation robustness
of fixed point clusters. In Cooperation in Clas-
sification and Data Analysis, Studies in Classi-
fication, Data Analysis, and Knowledge Orga-
nization, pages 27–39. Springer Berlin Heidel-

berg, 2009.
[21] Christian Hennig. Dissolution point and isola-

tion robustness: Robustness criteria for general
cluster analysis methods. Journal of Multivari-
ate Analysis, 99(6):1154 – 1176, 2008.

[22] Christian Hennig. Cluster-wise assessment of
cluster stability. Computational Statistics &
Data Analysis, 52(1):258 – 271, 2007.

[23] YoungSik Choi and R. Krishnapuram.
Fuzzy and robust formulations of maximum-
likelihood-based gaussian mixture decomposi-
tion. In Fuzzy Systems, 1996., Proceedings of
the Fifth IEEE International Conference on,
volume 3, pages 1899–1905 vol.3, Sep 1996.

[24] E. Dupuis Lozeron and M.P. Victoria-Feser.
Robust estimation of constrained covariance
matrices for confirmatory factor analysis.
Computational Statistics & Data Analysis,
54(12):3020 – 3032, 2010.

[25] Hichem Frigui and Raghu Krishnapuram. A
robust algorithm for automatic extraction of
an unknown number of clusters from noisy
data. Pattern Recognition Letters, 17(12):1223
– 1232, 1996.

[26] Hichem Frigui and Raghu Krishnapuram.
Clustering by competitive agglomeration. Pat-
tern Recognition, 30(7):1109 – 1119, 1997.

[27] Hichem Frigui and Raghu Krishnapuram. A
robust competitive clustering algorithm with
applications in computer vision. IEEE Trans-
actions on Pattern Analysis and Machine In-
telligence, 21:450–465, 1998.

[28] Fisher. Theory of statistical estimation. In
Proc. Cambridge Philosophical Society, vol-
ume 22, pages 700–725. Cambridge University
Press, Cambridge, 1925.

[29] A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via
the em algorithm. Journal of the Rozal Statis-
tical Society, Ser. B, 39(1):1–38, 1977.

[30] E. Anderson. The irises of the gaspe peninsula.
Bulletin of the American Iris Society, 59:2–5,
1935.

[31] A. Frank and A. Asuncion. UCI machine learn-
ing repository, 2010.

304

