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1 Introduction

As first established by Boveri in his pioneering work on malignant tumours

[Boveri, 1914], chromosomal rearrangements within the genome are substan-

tially involved in carcinogenesis. The resulting changes in gene expression

cause the abnormal and malignant behaviour of the affected cells.

Well-differentiated liposarcoma (WDLPS) is a type of cancer occuring in fat

cells of soft-tissue. While most cancer genomes show alterations of the normal

chromosomes, WDLPS is typically characterized by one or more neochromo-

somes that occur in addition to the otherwise mostly unaltered karyotype

[Sandberg, 2004]. The malignancy of the cells is therefore believed to arise

from the neochromosomes which are composed of various fragments derived

from the normal chromosomes [Garsed et al., 2009].

While the composition of individual tumors varies, commonly occuring com-

ponents of WDLPS neochromosomes - such as 12q14–15 - have been identified

[Garsed et al., 2009]. Less is known, however, about the spatial order of the

incorporated fragments. Their breakpoints are of particular interest as they

are likely to comprise gene alterations such as gene fusions or truncations,

that are widely believed to play a central role in the progression of WDLPS.

Next-generation sequencing (NGS) platforms provide a cost-effective and

high-resolution tool when aiming to characterize structural rearrangements

within cancer genomes as showcased e.g. by Campbell et al. [2008]. Pro-

vided with short-read sequencing data of the neochromosome of a WDLPS

patient, it is the aim of this work to identify the incorporated donor regions

and especially the sites of fusions between them.

The further characterization of such breakpoints will provide valuable in-
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formation, not only aiding diagnostics and therapeutics, but also helping

to understand the underlying mechanisms of cancer development. However,

the biological analysis necessary to make sense of the identified breakpoints

is beyond the scope of this thesis.

In order to tackle the tasks outlined above, some theoretical knowledge had

to be acquired as to the concepts, techniques, and methodologies applied in

or applicable to genetic research. Since a notable fraction of the time al-

lotted to this study had to be spent on such preparatory work, it is deemed

appropriate to elaborate on some such ’tools of the trade’ here. Beyond that,

this compilation of basics (provided in chapter 2) is intended to make the

body of this study more easily accessible to a readership from outside the

genetic field. In particular, current DNA sequencing technologies employing

the shotgun sequencing strategy and different assembly approaches are dis-

cussed.

In chapter 3, the material and methods used in order to identify donor re-

gions and breakpoints on the sequenced neochromosome are presented.

Starting out from the cytogenetic characteristics of WDLPS and a concise

description of the neochromosomal dataset the general analysis strategy is

layed out. Then, a more extensive description of self-developed modules of

the full chain of analysis is given. The implementation of the analysis pipeline

and its general feasibility were validated using synthetic datasets modelled

after realistic data properties.

Next, some results on the liposarcoma neochromosome are presented, before

this thesis is concluded in its final chapter.
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2 Basics

2.1 DNA

Deoxyribonucleic acid (DNA) contains the genetic information in almost all

living organisms, including humans. Chemically, DNA consists of two an-

tiparallel strands of nucleotides forming a spiral structure (Fig. 2.1a). The

two ends of each strand are distinguished by the chemical groups that termi-

nate them. One end, the 5’ end, has a terminal phosphate group while the

other one, the 3’ end, has a terminal hydroxyl group (Fig. 2.1b).

Each nucleotide is made up of a sugar, a phospate and one of the four bases

adenine (A), guanine (G), cytosine (C), and thymine (T). Sugar and phos-

phate build the backbone of each strand while each base on the one strand

forms a hydrogen bond with one base on the other strand. These units

formed by two bases are called base pairs (bp), with A bonding only to T

and G bonding only to C. As a result, the two nucleotide strands are com-

plementary and the entire genetic information – which is incorporated in the

sequence of the bases along the sugar phosphate backbone of each strand –

is present twice. This property is utilized in the process of DNA replication

in the context of cell division.

Within cells, DNA is organized in chromosomes. Humans have 22 different

autosomes occurring in pairs and two sex chromosomes forming another pair,

which adds up to a total of 46 chromosomes (Fig. 2.1c). Together, the 46

chromosomes form the human genome.
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(a)

a 5' ATTCGAGAATCCGATCTCGGAAAGCTGTATA 3'
  |||||||||||||||||||||||||||||||

b 3' TAAGCTCTTAGGCTAGAGCCTTTCGACATAT 5'

c 5' TATACAGCTTTCCGAGATCGGATTCTCGAAT 3'

(b)

(c)

Figure 2.1: DNA structure and organisation. A: A stretch of DNA. B: The fig-
ure exemplifies the representation of DNA sequences using the IUPAC Nucleotide
Code. a and b form a piece of double-stranded DNA. b is the complement of
a. As DNA sequences are generally read in direction from 5’ to 3’, b can also
be represented by its reverse c which is the reverse complement of a. C: DNA is
organized in chromosomes. The figure shows the set of chromosomes of a male
human. The 22 different autosomes come in pairs. Additionally, there are two
sex chromosomes (X and Y or two X) forming another pair. A and C adopted
from the Genetics Home Reference on the National Library of Medicine’s web site
(http://www.nlm.nih.gov/).

2.2 Sequencing

In the context of genome analysis sequencing refers to the process of de-

termining the exact sequence of nucleotides in a sample of DNA. However,

the length of a DNA molecule that can be sequenced directly using cur-

rent sequencing technology is quite limited. The maximum length is around

2000bp, while chromosomes – e.g. the human choromosome 1 at 247 million

nucleotide base pairs – are much longer. Still, the determination of very long

stretches of DNA is possible by use of the shotgun strategy. In this, the

original sequence is split into smaller, directly sequencable fragments, the

information of which is to be pieced together through assembly.

In the following, we will first describe the shotgun sequencing strategy (sec-
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tion 2.2.1) and proceed to a comparison of current sequencing technologies

that utilize it (section 2.2.2). Different approaches to assembly are discussed

separately in section 2.3.

2.2.1 Shotgun sequencing

Again, by use of current technologies one can directly sequence DNA only

up to a certain length. Invariably, this length is much smaller than complete

genomes or chromosomes. A strategy to resolve this problem is shotgun

sequencing [Staden, 1979], which consists of four steps: First, the original

DNA sample (Fig. 2.2a) is copied many times (Fig. 2.2b). These copies are

then randomly sheared into smaller fragments, e.g. by ultrasound (Fig. 2.2c).

Subsequently, a subset of these fragments is selected by size1 (Fig. 2.2d).

Finally, from each fragment a read2 is obtained.

In the double-barrel variant of shotgun sequencing a read is obtained from

both ends of each fragment, which leads to a collection of read pairs instead of

just single reads. The pairs provide valuable information, because not only

the sequence of the two reads is known, but – due to the size-selection of

the fragments – the approximate distance between them as well (Fig. 2.2e).

The collection of reads resulting from a shotgun sequencing experiment is

subject to the assembly process (section 2.3) aiming to reconstruct as much

as possible of the original source sequence.

2.2.2 Sequencing technologies

When comparing current sequencing technologies there are many factors to

consider such as read length, accuracy, speed and cost effectiveness – both

of the latter being highly related.

Since its introduction in 1977 Sanger sequencing [Sanger et al., 1977] has

1The term shotgun sequencing derives from the analogy to the firing of a shotgun where-
upon the pellets spread randomly towards the target. Similarly, the selected fragments
are obtained as if from random locations on the source sequence.

2The nucleotide order is determined beginning at the end of a fragment. The obtained
sequence is called a read. A read is shorter than the fragment, i.e. only the end fraction
of the fragment is sequenced.
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GGAGGTTGAAATAGTTGTGGAGGGAGTCAGTTTGCAATATTTATTATGTGAATCTC

CCTCCAACTTTATCAACACCTCCCTCAGTCAAACGTTATAAATAATACACTTAGAG
||||||||||||||||||||||||||||||||||||||||||||||||||||||||

(a)

GGAGGTTGAAATAGTTGTGGAGGGAGTCAGTTTGCAATATTTATTATGTGAATCTC

CCTCCAACTTTATCAACACCTCCCTCAGTCAAACGTTATAAATAATACACTTAGAG
||||||||||||||||||||||||||||||||||||||||||||||||||||||||

GGAGGTTGAAATAGTTGTGGAGGGAGTCAGTTTGCAATATTTATTATGTGAATCTC

CCTCCAACTTTATCAACACCTCCCTCAGTCAAACGTTATAAATAATACACTTAGAG
||||||||||||||||||||||||||||||||||||||||||||||||||||||||

GGAGGTTGAAATAGTTGTGGAGGGAGTCAGTTTGCAATATTTATTATGTGAATCTC

CCTCCAACTTTATCAACACCTCCCTCAGTCAAACGTTATAAATAATACACTTAGAG
||||||||||||||||||||||||||||||||||||||||||||||||||||||||

.

.

.

.

GGAGGTTGAAATAGTTGTGGAGGGAGTCAGTTTGCAATATTTATTATGTGAATCTC

CCTCCAACTTTATCAACACCTCCCTCAGTCAAACGTTATAAATAATACACTTAGAG
||||||||||||||||||||||||||||||||||||||||||||||||||||||||

GGAGGTTGAAATAGTTGTGGAGGGAGTCAGTTTGCAATATTTATTATGTGAATCTC

CCTCCAACTTTATCAACACCTCCCTCAGTCAAACGTTATAAATAATACACTTAGAG
||||||||||||||||||||||||||||||||||||||||||||||||||||||||

(b)

TTGTGGAGGGAGTCAGTTTGCAATATTTATTATGTG

AACACCTCCCTCAGTCAAACGTTATAAATAATACAC
||||||||||||||||||||||||||||||||||||

GGAGTCAGTTTGCAATATTTATTATGTGAATCTC

CCTCAGTCAAACGTTATAAATAATACACTTAGAG
||||||||||||||||||||||||||||||||||

TGGAGGGAGTCAGTTTGCAATATTTATTATG

ACCTCCCTCAGTCAAACGTTATAAATAATAC
|||||||||||||||||||||||||||||||

TATTTATTATGTGAATCTC

ATAAATAATACACTTAGAG
|||||||||||||||||||

AATATTTATTATG

TTATAAATAATAC
|||||||||||||

TTGAAATAGTTGTGGAGGGAGTCAGTTTGCAATATTTATTATGTGA

AACTTTATCAACACCTCCCTCAGTCAAACGTTATAAATAATACACT
||||||||||||||||||||||||||||||||||||||||||||||

TAGGGAGTCAGTTTGCAATATTTATTATG

ATCCCTCAGTCAAACGTTATAAATAATAC
|||||||||||||||||||||||||||||

GTCAGTTTGCAATATTTATTATGT

CAGTCAAACGTTATAAATAATACA
||||||||||||||||||||||||

GAGGGAGTCAGTTTGCAA

CTCCCTCAGTCAAACGTT
||||||||||||||||||

(c)

TTGTGGAGGGAGTCAGTTTGCAATATTTATTATGTG

AACACCTCCCTCAGTCAAACGTTATAAATAATACAC
||||||||||||||||||||||||||||||||||||

GGAGTCAGTTTGCAATATTTATTATGTGAATCTC

CCTCAGTCAAACGTTATAAATAATACACTTAGAG
||||||||||||||||||||||||||||||||||

TGGAGGGAGTCAGTTTGCAATATTTATTATG

ACCTCCCTCAGTCAAACGTTATAAATAATAC
|||||||||||||||||||||||||||||||

TATTTATTATGTGAATCTC

ATAAATAATACACTTAGAG
|||||||||||||||||||

AATATTTATTATG

TTATAAATAATAC
|||||||||||||

TTGAAATAGTTGTGGAGGGAGTCAGTTTGCAATATTTATTATGTGA

AACTTTATCAACACCTCCCTCAGTCAAACGTTATAAATAATACACT
||||||||||||||||||||||||||||||||||||||||||||||

TAGGGAGTCAGTTTGCAATATTTATTATG

ATCCCTCAGTCAAACGTTATAAATAATAC
|||||||||||||||||||||||||||||

GTCAGTTTGCAATATTTATTATGT

CAGTCAAACGTTATAAATAATACA
||||||||||||||||||||||||

GAGGGAGTCAGTTTGCAA

CTCCCTCAGTCAAACGTT
||||||||||||||||||

(d)

read 1

read 2

5' GGAGTCAGTTTGCAATATTTATTATGTGAATCTC 3'

3' CCTCAGTCAAACGTTATAAATAATACACTTAGAG 5'
   ||||||||||||||||||||||||||||||||||

lr1 r2
read distance

< < < <<<
< <

(μ,σ)< <

(e)

Figure 2.2: Shotgun sequencing. For details see text.

dominated the field, due to its efficiency and reliability compared to other

methods. Gradually improved over the years, it currently affords read-lengths

of up to ∼2000bp and per-base accuracies as high as 99.999%. With au-

tomation and parallelization of the process the cost effectiveness went up

significantly. The price per kilo base (kb) dropped from $10000 in 1985 to

$1 in 2005, when the potential of increasing the throughput seemed mostly

exhausted, making a further major decrease in cost unlikely. Thus, intense

efforts towards the development of alternative methods were made.

The first of these next-generation sequencing (NGS) technologies, the Genome-



2 Basics 7

Sequencer by 454 Life Sciences3, was introduced in 2005 [Margulies et al.,

2005], shortly followed by the Illumina/Solexa Genome Analyzer4 in 2006 and

the ABI/SOLiD system5 in 2007. The new platforms afford fast and cheap

generation of an abundance of data. This main advantage over traditional

Sanger-based methods is due to a far higher throughput resulting from a very

high degree of parallelization of the sequencing process. Strongly reduced cost

per mega base (Mb) in comparison to Sanger sequencing puts “large-scale

sequencing within the reach of many scientists” [Pop and Salzberg, 2008].

On the downside are shorter read-lengths and lower accuracies. While paired-

end data is available with both Sanger-based and NGS platforms, the possible

read distance is much smaller with NGS [Kingsford et al., 2010]. An overview

of the properties of current sequencing technologies is provided in Table 2.1.

For more detailed descriptions of these technologies the reader is referred to

the reviews by Mardis [2008] or Ansorge [2009].

method cost ($/Mb) read-length (bp) accuracy (%)

Sanger chain-termination 1000 up to 2000 99.0 to > 99.999
454 pyrosequencing 60 250 bp 96.0 to 97.0
Illumina sequencing-by-synthesis 2 35/75 bp 96.2 to 99.7
SOLiD sequencing-by-ligation 2 35 bp 99.0 to > 99.9

Table 2.1: Comparison of current sequencing technologies. Estimates of costs,
read-lengths and accuracies may quickly be outdated due to ongoing research and
rapid development in the field. Accuracies from Chan [2009].

2.3 Assembly

As current sequencing methods produce reads of limited length, longer stretches

of DNA can only be determined by assembling – i.e. aligning and merging

– a collection of reads R previously obtained from shotgun sequencing. The

reads, just as the source sequence, are words over the alphabet Σ. The se-

quence of each read is known, while the corresponding location on the source

sequence S is not.

3http://www.454.com/
4http://www.solexa.com/
5http://www.appliedbiosystems.com/
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Formally described in (2.1), this situation constitutes the fragment assembly

problem (FAP), which is to reconstruct the original sequence S given the

collection of reads R.

Σ = {A,C,G, T}

S = s1s2...sm, si ∈ Σ oder S ∈ Σ∗

R = {r1, r2, ..., rn}, ri ∈ Σ∗

(2.1)

This is a difficult (NP-hard) combinatorial optimization problem as, a priori,

there are 2nn! possible combinations to assemble n reads [Alba and Dor-

ronsoro, 2008]. Thus, feasible approaches involve sophisticated algorithms

that take into account the characteristics of the data and preferably addi-

tional constraints, e.g., paired-end information or a reference assembly. While

the former can be used in any case, it is inappropriate to use the latter, if

substantial rearrangements are to be expected. For this reason, only de novo

assembly, i.e., assembly without the use of a reference, is considered in the

remainder of this section.

As a consequence of random shearing during shotgun sequencing the source

sequence is not uniformly covered by reads (Fig. 2.3a). The local coverage

at a given position of the source sequence is defined as the number of reads

that cover it. Accordingly, the overall coverage of the source sequence S is

the ratio of the size of the read set and the size of S:

coverage(S) =

∑n
i=1 |ri|
|S|

(2.2)

Stretches of S not covered by reads cannot be reconstructed by assembly. If

such stretches occur, the assembly is bound to be fragmented, i.e., its result

will consist of multiple contigs6. Lander and Waterman [1988] analyzed the

relationship between coverage and the number of contigs of an assembly

(Fig. 2.3b) on the supposition that the reads are distributed along the source

sequence according to a Poisson process. Drops of rain cover the ground bit

by bit; many spots are hit repeatedly before, eventually, the entire surface

6A contig is a contiguous sequence obtained by merging overlapping reads or sequences.
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(a) (b)

Figure 2.3: Coverage distribution. A: Coverage distribution of a con-
tig reconstructed from overlapping reads displayed underneath. The cov-
erage varies substantially due to random shearing during the shotgun pro-
cess. (adopted from http://www.cbcb.umd.edu/confcour/CMSC423-materials/

Genome_assembly.pdf) B: Dependence of the number of contigs on coverage for
a 1Mbp source sequence due to the Lander-Waterman equation [1988]. Evidently,
a too low coverage would result in a considerably fragmented assembly. (adopted
from http://www.cbcb.umd.edu/research/assembly_primer.shtml)

is wet. By analogy, the source sequence has to be oversampled several times

to make sure (or highly likely) that any base is covered by at least one read

[Pop, 2004].

One assumption, that assembly algorithms rely on, is that every read corre-

sponds to a fraction of the source sequence. While this is generally justified,

incorrect reads do occur for which the above is only partially true. The dis-

tortion of such reads originates in the false detection of one or more bases in

the course of the sequencing process. There is a variety of sequencing errors,

the simplest of which are base insertion, base deletion and base substitution.

The error probability can be estimated and is recorded in terms of quality

scores. Some sequencing methods are more reliable than others, which is

reflected by their quality score height. The problem of incorrect reads can be

fixed, when the affected stretch of the source sequence is covered by multiple

reads (Fig. 2.4). The required coverage in order to correct most errors varies

with the sequencing platform used. For instance, with Sanger sequencing 3-

fold coverage is usually sufficient even for diploid genomes, while for Illumina
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reads (at lengths of around 35bp) 20-fold coverage is necessary to assemble

bacterial genomes [Chan, 2009; Dohm et al., 2008].

GGAGGTTGAAATAGTTGTGGAGAGTCAGTTTG
      TGAAATAGTTGTGGAGAGTCAGTTTGCAATATT
         AATAGTTGTGGAGAGTGAGTTTGCAATATTTATTAT
                  GGAGAGTCAGTTTGCAATATTTATTATGTGAATCT

GGAGGTTGAAATAGTTGTGGAGAGTCAGTTTGCAATATTTATTATGTGAATCT

read 1
read 2
read 3
read 4

contig

Figure 2.4: Error-correction. Sequencing errors can be detected and often cor-
rected if multiple reads cover the relevant stretch of the source/the contig. Thus,
sufficient coverage is an essential requirement of error-correction. The shaded base
in read 3 is identified as incorrect and can be corrected by means of the other
aligned reads (1,2 and 4). Fig. based on Pop [2004].

Another assumption is that overlapping reads come from the same loca-

tion on the source sequence. However, this is not necessarily the case [Pop,

2004]. Repeats, i.e., sequences that occur more than once within the source

sequence, can induce overlaps between reads that originate from different

regions within the source. Such reads cannot always be assembled unam-

biguously. Obviously, the difficulty is to differentiate between ’true’ and

repeat-induced overlaps. If a repeat is longer than the read length, paired-

end information – if available – can be used to resolve ambiguity by bridging

the repeat. Repeats longer than the distance between the mates are still

not solvable. Also coverage estimates are taken into account when assem-

bling repetitive stretches (see also Fig. 2.6 and Fig 2.7). Unresolved repeats

yield a fragmented assembly at best and a misassembly in the worst case.

In practice, sequencing errors and repeats render a correct reconstruction of

source

contigs

Figure 2.5: Sketch of the fragmentation of an assembly due to repeats. The
source sequence (lower line) contains eight repeats (light grey). The upper line
represents the assembly consisting of four contigs. The four short repeats are
resolved by coverage estimates and paired-end information, while the longer ones
cause the gaps in the assembly. The order of the contigs is inferred from pairs
that span the gaps (cf. scaffolding, section 2.3.3). Fig. based on Pop and Salzberg
[2008].
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an entire source sequence next to impossible without additional information

[Pop, 2004]. Given sufficient coverage and paired-end data, an assembly con-

sisting of a small number of contigs is a more realistic objective in most cases

(Fig. 2.5).

2.3.1 A greedy approach for the shortest common su-

perstring problem

The fragment assembly problem can be modeled by the shortest common

superstring problem (SCS), i.e., given a set of strings Σ = {s1, s2, ..., sn}, to

find the shortest string S that holds: si is a substring of S for all i, 1 ≤ i ≤ n.

When considering a graph representation of this problem, it becomes obvious

that the problem is equivalent to the Travelling Salesman Problem (TSP),

i.e., to find the shortest path that visits every node of a graph at least once.

The TSP is known to be NP-complete and so is the SCS [Huson, 2010].

The SCS does not model repeats and sequencing errors and is thus an ide-

alized setting of the FAP. While the SCS can be modified to include errors

[Huson, 2010], it is not adaptable to model repeats. Thus, it proved suitable

to only a limited extent when trying to solve the FAP in practice, but it

remains useful for a better understanding of the situation [Pop, 2004].

In the context of the SCS, greedy algorithms provide a straight forward strat-

egy to assembly: Beginning with individual reads as single contigs, merge the

two contigs that have the maximum overlap and iteratively continue to do

so until there is nothing left to join.

1. Compute all pairwise overlaps of the set of reads R.

2. Considering all reads as contigs, merge the two contigs that overlap

best.

3. Repeat step 2 until no more joins possible.

This greedy approach is relatively efficient and quite easy to implement.

However, as mentioned above, the approach is not feasible to handle repeats.

Here, the outlined greedy strategy can lead to misassemblies, e.g., overcom-

pressions because it takes only local information into account (Fig. 2.6).
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(a) (b)

Figure 2.6: Repeat-induced overcompression using the greedy strategy outlined
above. The source sequence (a) contains a two-copy R=R’. In the assembly (b)
the part Rc=R’c is overcompressed. From Huson [2010].

2.3.2 Graph theory approaches

As seen in the previous section, the SCS model is suboptimal when the

shortest solution is not the correct one. Due to repeats, this is the case

often enough. Accordingly, the corresponding greedy-algorithm – inher-

ently optimizing a local objective function (here the overlap-quality of two

reads/contigs) – does not necessarily lead to a globally optimal solution [Hu-

son, 2010; Pop, 2004; 2009].

However, there are two graph-based approaches to assembly that pursue dif-

ferent strategies: The Overlap-layout-consensus (OLC) and the de Bruijn

graph approach.

2.3.2.1 Overlap-layout-consensus

The overlap layout consensus approach divides the assembly into three basic

steps:

1. Overlap phase: the reads are compared to each other resulting in a list

of pairwise overlaps, which is then used to construct the overlap graph.

This is a graph containing each read as a node and an edge between

every two nodes whose corresponding reads overlap.

2. Layout phase: The reads are grouped based on their alignments/overlaps

and ordered relatively within their group. This corresponds to identify-

ing (sub)paths in the graph that correspond to sections of the original

source sequence.

3. Consensus phase: The (sub)paths found in the layout step are con-

verted into contigs or (in the optimum case) just one contig.
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Figure 2.7: Schematic overlap graph of a partially repetitive source sequence.
According to their overlaps, the reads were assigned to the connected groups A,B,C
and D. By means of coverage comparisons, group B is recognized as a two-copy
repeat and the original source sequence is infered to be ABCBD. Fig. from Pop
[2009].

Ideally, the result of the consensus phase is a single contig equal to the original

source sequence that corresponds to a single path through the overlap graph

visiting each node exactly once. To find such a path is the Hamiltonian path

problem which is known to be NP-hard.

However, unlike the greedy approach the OLC approach is appropriate to

represent repeats (cf. Fig. 2.7; compare to Fig. 2.6).

In the context of Sanger-based sequencing OLC-based assembly tools were

used with great success. When applied to NGS data, however, the huge

number of reads severely scales up the graph and thus aggravates the contig

calculation. Additionally, due to the short reads the calculated overlaps need

to incorporate most of the participating reads [MacLean et al., 2009].

2.3.2.2 De Bruijn graph approach

A string of length k is called a k-mer. The k-mer spectrum of a string s is

the set of all k-mers that are substrings of s.

Given a set of reads, the de Bruijn graph is constructed as follows (see also

Fig. 2.8):

1. Construct the k-mer spectra of all reads.

2. Construct the (k-1)-spectrum of each unique k-mer, i.e., two (k-1)-mers

per k-mer.



2 Basics 14

3. Create a node for each (k-1)-mer.

4. Create an edge between two nodes, if the corresponding (k-1)-mers can

be merged into one of the k-mers.

In this setting, the assembly problem is to find an Eulerian path in the de

Bruijn graph, i.e., a path that traverses every edge in the graph.

source sequence: ACCATTCCAA
                 
reads:           ACCATTC, ATTCCAA

k-mers:          ACCA, CCAT, CATT, ATTC, TTCC, TCCA, CCAA

(k-1)-mers:      ACC, CCA, CAT, ATT, TTC, TCC, CAA   

ACC CCA

CAA

ATT TTC TCCCAT
ACCA CCAT CATT ATTC TTCC

TCCA

CC
AA

Figure 2.8: De Bruijn graph example. The source sequence is covered by two
reads. The unique k-mers and (k-1)-mers are incorporated in the corresponding
de Bruijn graph as described in the text.

Unlike the Hamiltonian path problem, the Eulerian path problem is generally

solvable in polynomial time. However, there are potentially multiple Eule-

rian paths in a graph, and to find the best one – with respect to the given

constraints – is not as easy. Medvedev et al. showed, e.g., that to find the

shortest Eulerian path in a de Bruijn graph is NP-hard [2007].

Furthermore, the approach is very sensitive to read errors, as each error leads

to the creation of additional k-mers. In consequence, the approach and im-

plementations employing it, e.g., the Euler assembler [Pevzner et al., 2001],

were not as popular at first.

However, the advent of NGS platforms led to the establishment of the strat-

egy as the abundance of short reads generated here can be handled better

than with the OLC approach. In the OLC approach the construction of the

overlap graph is very demanding when confronted with an abundance of short
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CGTAGGAGGTTGAAATAGTTGTGGAGGGAGTCAGTTTGCAATATTTATTATGTGAATCTCTTATCAGTCATAGTTATAT
    GGAGGTTGAAATAGTTG        GTCAGTTTGCAATATTTATTATGTGAAT    TATCAGTCATAGT

contig 1 contig 2 contig 3

original source sequence

contig 1 contig 2

Figure 2.9: Contigs and scaffolds. A: Due to insufficient coverage an assembly of
the reads acquired from the original source sequence resulted in the three contigs 1,
2 and 3. They correspond to consecutive sections of the original source sequence.
However this is initially not known. B: The order of the contigs can often be
inferred by use of paired-end information. In this example two pairs indicate the
order, distance and relative orientation of contig 1 and 2.

reads. By contrast, in a de Bruijn graph only unique k-mers/(k-1)-mers are

incorporated instead of all the reads.

2.3.3 Scaffolding

The output of any assembler – independent of its underlying algorithmic

paradigm – consists of more than just one contig in the vast majority of

cases. The relative orientation, order and distance with respect to each

other is initially unknown. Paired-end data – if available – can be used to

deduce some of this information. If a pair links to contigs, it indicates their

relative orientation and – except in case of quite short contigs – order as well

as an approximate distance. The information of all relevant pairs can be

incorporated in a graph with contigs as nodes and linking pairs as edges. A

preferably small number of coherent arrangements of contigs – called scaffolds

(Fig. 2.9) – can then be extracted from the graph [Pop, 2009].
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3 Mapping of WDLPS

neochromosomes

The main overall objective here is to determine the structure of the sequenced

well-differentiated liposarcoma (WDLPS) neochromosome.

Liposarcoma is a malignant tumor occurring in fat cells of soft-tissue. With

an annual incidence of 2.5 per million population, it is the most common

type of soft-tissue sarcoma in adults, the 5-year survival rate is below 50%

[Schwartz et al., 2010].

Starting out from the most important cytogenetic and molecular aspects

of WDLPS, a concise description is given of the data to be analyzed. An

outline of the general analysis strategy is followed by a more comprehensive

elaboration of the techniques employed here. To test its implementation and

evaluate its feasibility, the strategy is applied to a synthetic dataset, the

structural properties of which are known.

3.1 Cytogenetic features of WDLPS

Most WDLPS tumors are cytogenetically characterized by one or more cancer-

associated neochromosomes that occur in addition to the 46 normal chromo-

somes. These neochromosomes are found in both, a ring and linear-shaped

(’giant rod’) topology (Fig. 3.1; compare Fig. 2.1c), with the linear form

supposedly emerging from the ring through linearisation [Garsed et al., 2009;

Sandberg, 2004].
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Figure 3.1: Common cytogenetic features of WDLPS. In this segment of the
metaphase of a WDLPS both a ring and a linear-shaped neochromosome are
present. Figure extracted from Sandberg [2004].

The genetic material of neochromosomes consists of “donated” fragments

from different normal chromosomes (Fig. 3.2). The incorporated parts are

subject to substantial rearrangement, amplification, and modifications of one

sort or another. While it is assumed that WDLPS is driven by these genomic

alterations contained within neochromosomes, the exact mechanism is still

unknown. The involved donor sites have already been identified to a great

extent, however, their order and the fusion sites are not as well characterized,

yet [Garsed et al., 2009].

chr. 1 chr. 2
............

chr. 22 chr. X chr. Ychr. 3

neochromosome

Figure 3.2: Conceptual sketch of neochromosome structure. The cancer chro-
mosome is presumably composed of substantially rearranged and modified genetic
material from normal chromosomes.
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3.2 Data

We were provided with three sets of reads from a giant rod chromosome

found in cells of a patient suffering from WDLPS.

Due to its size the giant rod is heavier than normal chromosomes. Hence, it

could be successfully separated in the laboratory using float-sorting. Prior

to our analysis three runs of sequencing using the Illumina platform were

conducted, resulting in three sets of reads, viz.:

1. ∼12 million pairs of 35bp length

2. ∼12 million pairs of 75bp length

3. ∼12 million single-end reads of 75bp length.

The read data adds up to a total of (24000000∗(35+75)+12000000∗75)bp ≈
3500Mbp corresponding to ∼3.6 GB of disc space when stored as FASTA-

files1.

The giant rod has a size of approximately 650Mbp. Thus, the overall coverage

is approximately 5-fold (3500Mbp/650Mbp).

3.3 Analysis strategy

The analysis of the data is essentially conducted in three steps (Fig. 3.3).

Because the use of a reference genome to support the assembly process is in-

appropriate in the face of significant genomic rearrangements, the first step

consists in de novo assembly of the read data (section 2.3). Due to the

sizeable amount of short reads, the de Bruijn graph approach would appear

better suited than the OLC. Hence, for data assembly here we chose Velvet

[Zerbino and Birney, 2008], which is one of the most widely used assembly

tools based on the de Bruijn graph approach (section 2.3.2.2).

It seemed more efficient to analyze the contigs resulting from the assembly

separately from the de Bruijn graph itself, which at a size exceeding 10 GB

is quite difficult to handle. Though a closer look at the graph would appear

1A FASTA-file contains sequences in the following format: For each sequence a one line
description beginning with ’>’ is followed by one or more lines containing the sequence.
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worthwhile, it was deemed necessary, also on account of time constraints as

to the internship, to opt for a further analysis of the contigs only.

In the second step, the short read alignment tool Bowtie [Langmead et al.,

2009] is utilized to map the individual reads back to the contigs. In a scaf-

folding manner we try to detect and characterize connections between the

contigs by analyzing the paired-end data. In the resulting contig-graph, each

contig is represented by a node and each detected connection between con-

tigs is mapped as an edge connecting corresponding nodes. The detected

connections differs in the number of pairs supporting them. If the support is

below an adjustable threshold, the connection is flagged as unreliable.

>

>

>

  
  
  

 
 
  
 

>
>>

>
>

>

>
assemble
(velvet)

map
(bowtie)

map
(blast)hrg

pr
oc
es
s 
al
ig
nm
en
ts

process alignments

contig-graph

pairs

single reads

contigs

Figure 3.3: Overview of analysis strategy.

In the third step the contigs are mapped to the human reference genome

using BLAST [Altschul et al., 1990]. The BLAST-results are postprocessed

to select and, if necessary, to combine the alignments in order to identify

the donor sites – i.e. the location of contigs or parts of them on the human

reference genome – with highest possible confidence. Subsequently, this in-

formation is added to the contig-graph, which is then searched for the most

interesting nodes and connections. The nodes containing regions from differ-

ent locations of the human reference genome and the edges connecting such
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nodes are indicative of fusion sites on the neochromosome.

The strategy was first implemented and tested using synthetic data (section

3.3.3). Finally, the analysis chain was applied to the real data.

3.3.1 Read-contig mapping

The contigs obtained through assembly need to be analyzed as to their rel-

ative placement with respect to each other. For this purpose we use an ap-

proach that follows the idea of scaffolding, briefly described in section 2.3.3.

In case the distance of two contigs is less than the expected distance of

paired-end reads, it can be assumed – given sufficient coverage – that there

are pairs that ’bridge’ the gap between the contigs (Fig. 2.9): Finding one

read of a pair on the first contig and the other on the second, indicates that

the two contigs involved were connected on the original sequence, i.e., the

neochromosome here.

We use Bowtie [Langmead et al., 2009] in single read mode to map the reads

to the contigs. The alignments are structured as shown in Table 3.1.

The post-processing of the Bowtie-alignments is conducted using the most

reliable information. Out of all reads those having just one alignment can be

assigned to the aligned location with highest confidence provided there are

no mismatches. Similarly, when both reads of a pair are mapped uniquely,

the pair can be used to identify connections between contigs with highest

confidence.

read id strand contig id position sequence mismatches

17 − 409 768 TGGGAAGGTAAGTTATTTTTTATG 0
52 + 7156 1126 ATTTTGTCACATCTACCAATACTG 0
53 − 7156 1344 TTGTTGAACGTTCTTTAGTTCAGA 0
76 + 24429 2816 TTTTGGTGAGAAGAATATGTATTT 0
77 − 24429 3047 AGAGAGGGCACTTCTGTTGTGCCC 0

...
...

...
...

...
...

Table 3.1: Structure of Bowtie alignments. The table exemplifies the structure of
the Bowtie alignments. Each line corresponds to an alignment. In each alignment
the following fields are specified: read id, strand of the contig to which the read
was aligned, contig id, position, i.e., offset with respect to the start of the contig,
nucleotide sequence and number of mismatches.
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All fully mapped - i.e. unambiguously aligned - read pairs are subject to fur-

ther analysis. The initial conditions are formally described through eq. (2.1)

(cf. section 2.3). Moreover, each two reads rk and rk+1 form a pair, if

k mod 2 = 0. Let c1 and c2 be contigs. We say c1 and c2 are connected by

the pair formed by rk and rk+1, if rk is aligned to c1 and rk+1 is aligned to

c2 or vice versa.

Let k = 1. If c1 and c2 are connected by r1 and r2 there are several scenarios

to consider. To begin with, there are the cases c1 = c2 and c1 6= c2. Either

of them ramifies further due to side conditions as to read orientation in that

r1 and r2 may have equal (strand(r1) = strand(r2)) or opposing (strand(r1)

6= strand(r2)) directions. As illustrated in Fig 3.4, this leads to four scenarios

altogether.

c1 c2

r1 r2

A: c1 = c2 ∧ str(r1) 6= str(r2)

B: c1 = c2 ∧ str(r1) = str(r2)

C: c1 6= c2 ∧ str(r1) 6= str(r2)

D: c1 6= c2 ∧ str(r1) = str(r2)

Figure 3.4: Analysis of pairs. Each fully mapped pair is subject to further
analysis. There are basically four scenarios to consider, labelled A, B, C and D.

The relative placement of two contigs on the original source sequence, i.e.,

whether c1 is followed by c2 or vice versa, may be established through a case-

by-case analysis. The decision as to which contig sequence is most probably

correct is based on contig distance estimates to be performed for all possible

cases A through D. Distance estimation in either case involves the positions

(offsets) of a read pair found on any two contigs. In the following, these dis-

tances are specified in terms of contig length |c|, read position, read length |r|,
and unknown gap length x between contigs.

Depending on the relative positioning of c1 and c2 with respect to each other

there are two possible contig distances for case C (cf. Fig. 3.5), viz.:

C1: d = |c1| − position(r1) + x + position(r2) + |r2|

C2: d = |c2| − position(r2) + x + position(r1) + |r1|
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In case D both reads are mapped to the same strand, which violates the

C1

c1 c2

r1 r2
x <<

< <d

C2

c2

r2

c1

r1
x <<

< <d

D1

c1 flip(c2)

r1 r2
x <<

< <d

D2
r1

<
flip(c1) c2

r2
x <<

<d

Figure 3.5: Analysis of pairs - different contigs.

complementary strand constraint of paired-end reads (cf. Fig. 2.2e). This

implies that one of the contigs needs to be flipped in order to meet this stipu-

lation. The flipping would appear to cause two additional distance measures.

However, since two contig arrangements are equivalent to one another, there

are effectively two possibilities. As can be inferred from Fig. 3.5:

D1: c1 followed by flip(c2)⇔ c2 followed by flip(c1)

d = |c1| − position(r1) + x + |c2| − position(r2)

D2: flip(c1) followed by (c2)⇔ flip(c2) followed by (c1)

d = position(r1) + |r1|+ x + position(r2) + |r2|

Case B is analogous to D. Instead of two different contigs there are two in-

stances of the same contig. Observing that c1 = c2 = c, the distances may

be evaluated as with D1 and D2.

The same correspondence exists between cases A and C, such that the dis-

tances in the cases A1 and A2 may be determined as with C1 and C2, except

for c1 = c2 = c. However, in addition to cases A1 and A2, which involve two

instances of the same contig c, a third case A3 (Fig. 3.6) arises from the fact

that both reads may be found on the same instance of c:

A3: d = position(r2) + |r2| − position(r1)
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Even though A3 appears irrelevant as to contig order assessment, it plays a

key-role in threshold specification (see below). Note also that an equivalent

case B3 is rendered impossible by the complementary strand constraint of

paired-end reads.

A3
r2

c

r1

< <d

Figure 3.6: Analysis of pairs - same contig.

The estimated distances for all possible arrangements (A1 through D2) of

each read pair are compared to the expected distance resulting from the av-

erage read distance (also known as insert size) used during the sequencing

process (cf. Fig. 2.2e). A threshold defined as the maximum allowable differ-

ence between expected and estimated distance can be inferred from distance

variations in read pairs from a case A3-only analysis. This threshold, sub-

sequently, serves in selecting the most probable distance estimate from the

distance ensemble corresponding to A1 through D2. Read pairs correspond-

ing to A3 are used in estimating the coverage of the contig they are found

on, while pairs associated with any other case indicate the type of contig

connection as well as the approximate distance of the contigs involved. The

information gained from connection-inducing pairs is utilized to construct a

contig-graph. In this, nodes and edges between nodes represent contigs and

detected contig connections, respectively.

Let e be an edge connecting two contigs. Then, e has two options of binding

at each end. It can bind to the positive or the negative strand of each contig.

In other words, it connects either to the contig or to the flipped version of the

contig. This results in two distinct types of edges. The first type corresponds

to all connections that are induced by pairs whose mates are in correct ori-

entation with respect to each other. This type represents connections of the

kind c1 – c2 and c2 – c1. The second type represents connections induced

by pairs whose mates where mapped to the same strand, viz. c1 – flip(c2)

and flip(c1) – c2. An example is given by Fig. 3.7. Type 1/2 connections are
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depicted as straight/curvilinear lines.

Furthermore, each edge is attributed the number of pairs supporting it. The

more pairs support a connection the more reliable it is. The supporting pairs

also indicate the approximate distance of the connected contigs. The number

of pairs and the indicated connection are denoted in the format ’number of

pairs/ approximate distance’ as edge label.

id: 8
l: 748

id: 14448
l: 297

6/166

id: 931
l: 1022

42/274

id: 11930
l: 1682

62/274id: 769
l: 168

14/242

id: 9574
l: 643 3/231

Figure 3.7: Contig-graph example.

3.3.2 Contig-reference mapping

As described in the previous section, the outcome of read-contig-mapping

and processing of alignments is a graph containing the contigs and their

connections. In this section we explain how the graph is extended by adding

information obtained by mapping the contigs to the human reference genome

using BLAST [Altschul et al., 1990]. This way, it is aimed at identifying the

contigs’ origin(s) on the normal chromosomes.

An example of the BLAST-results is given in Table 3.2. For each contig

that has alignments on the human reference genome there is a result of the

displayed structure. Each alignment has the following properties: the query

id (which correponds to the contig id) and the subject id (corresponding

to the id of the chromosome from the human reference genome); identity,

length, number of mismatches and number of gap openings; the location on

the query and on the subject; the e-value and the bit score. Each line corre-

sponds to an individual alignment.

As with the example of Table 3.2, there are many obvious cases as to what

is the best, i.e., most probable, deduction that can be drawn from the align-

ment. However, there are also other cases in which the situation is not

assessable as easily. Then, combinations of alignments need to be considered

in order to find the most probable deduction.
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q.id s.id id. (%) length mm gaps q.s q.e s.s s.e e-val. bit sc.

871 12 100.00 3572 0 0 1 3572 73852464 73856035 0.0 7081
871 9 93.02 86 6 0 1 86 31673785 31673700 8e−25 123
871 2 92.31 91 4 1 1 88 214304525 214304435 3e−24 121
871 11 92.05 88 7 0 1 88 108622082 108622169 1e−23 119
871 14 92.05 88 7 0 1 88 51000788 51000875 1e−23 119
871 1 91.01 89 8 0 3 91 143900301 143900389 8e−22 113
871 1 91.76 85 7 0 1 85 33488862 33488946 8e−22 113

...
...

...
...

...
...

...
...

...
...

...
...

Table 3.2: Structure of Blast alignments. The table exemplifies the structure of
the Blast alignments. From left to right the columns contain: query id, subject id,
identity (%), alignment length, number of mismatches, number of gap openings,
query start, query end, subject start, subject end, e-value and bit score. Each line
corresponds to one alignment.
In the example the contig 871 was most probably on chromosome 12 at position
73852464. This can be infered from the comparison of the alignments: The first
alignment has an identity value of 100% and is also a lot longer than the other
alignments. This leads to a superior e-value and bitscore.

A simple heuristics is applied to process and classify the obtained alignments:

First, find the most obvious cases and assign a reference-location to the cor-

responding contigs. Then, look at the alignments of ’neighbours’ of already

assigned contigs in the graph and assign reference-locations to them, too, if

possible. Build combinations of alignments starting with the most reliable

ones and choose the best option where necessary. The retrieved information

is used to extend the contig-graph (see example in Fig. 3.8).

The contig-graph can now be searched for connections of interest. Most im-

portantly, edges between nodes corresponding to contigs assigned to distant

regions on the reference genome represent the breakpoints, that are likely to

contain gene modifications like gene fusions or truncations.

id: 8
l: 748

id: 14448
l: 297

6/166

id: 931
l: 1022

42/274

id: 11930
l: 1682

62/274id: 769
l: 168

14/242

id: 9574
l: 643 3/231chr.: 1 chr.: 1 chr.: 1

chr.: 1

chr.:4
0

0

Figure 3.8: Contig-graph example after extension.
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3.3.3 Test data generation

During the process of development and for the purpose of testing the im-

plementation synthetic data were generated whose structural properties are

known. It was the aim to model the assumed situation described in section

3.1 to the necessary extent (see Fig. 3.2).

The generation of test data sets was conducted in three steps.

First, a reference sequence corresponding to the 24 different chromosomes

was randomly created. For the sake of simplicity, only one reference (instead

of 24) was used here. In the second step, a ’cancer sequence’ was assembled

by using fragments randomly extracted from ’donor sites’ on the reference.

Finally, a double barrel shotgun sequencing experiment was simulated by

randomly extracting paired-end reads from the cancer sequence.

The implementation of the data generator along these lines features a variety

of adjustable parameters that are summarized in Table . The implementation

of the described steps comprises different parameters, which are outlined in

Table 3.3.

step parameter description

reference generation alphabet e.g. {A,C,G,T}
reference length (bp) e.g. 100000

cancer sequence generation fragment length ∼ N (µ, σ2) the fragment length is modelled as
a gaussian-distributed variable, the
mean µ and standard deviation σ of
which can be specified

# extracted fragments number of different fragments ex-
tracted from the reference

# composing fragments number of fragments randomly taken
from the set of extracted fragments
used to compose the cancer sequence

read extraction read length (bp) e.g. 75
read distance ∼ N (µ, σ2) the read distance is modelled as a

gaussian-distriubted variable, too. (see
fragment length)

overall coverage the number of reads that need to be
extracted is determined by the term
|cancer sequence| ∗ overall coverage

read length
.

Table 3.3: Parameters of test data generation.



3 Mapping of WDLPS neochromosomes 28

3.3.4 Implementation

The strategies described above were implemented in the JAVA program-

ming language. Its almost-independence of platform and operating system

as well as the availability of libraries usable for visualization and GUI were

all-important in choosing this language.

The necessary input of the program is the paired-end sequencing data in form

of fasta files. Furthermore, the implementation depends on external tools for

assembly and alignment as well as the human reference genome. The exter-

nal applications Velvet, Bowtie, and BLAST can be called from within the

program provided the paths to the installation directories are given. Alter-

natively, the assembly and alignment results can be given as additional input

files. While the tools named above were chosen here, it is generally possible

to use others.

The workflow of the implementation can be summarized as follows:

1. Import the reads from the specified FASTA-file(s).

2. Call Velvet and/or import contigs from FASTA-file (Velvet-output).

3. Call Bowtie and/or import read-contig alignments (Bowtie-output).

4. Analyze paired-end information and construct contig-graph (section 3.3.1).

5. Call BLAST and/or import contig-reference alignments (BLAST-output).

6. Analyze contig-reference alignments and enhance contig-graph (section 3.3.2).

7. Search contig-graph for interesting connections and write output.

The output consists of a text-file containing information on the extracted

connections. Also on output are the contig-graph as a dot-file2, and a text-

file summarizing some statistics. Among the latter are the number of input

reads located on contigs or the number of contigs assigned to a position on

the human reference genome.

The program may be run in command line mode or from a simple graphical

user interface (GUI). Display of status messages and interim results as well as

saving and loading options for discrete intermediate stages of the applications

are among the features of the GUI.

2By means of the dot-file the graph can be visualized using Graphviz, an open-source
collection of graph drawing tools [Ellson et al., 2002].
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4 Results

Paired-end information is essential to the detection of connections between

contigs and thus to the generation of the contig-graph. Hence, it is deemed

sensible to present some characteristics of the two sets of paired-end reads

to begin with.

The distributions of read lengths for set 1 and set 2 are shown in Fig. 4.1.

The target read lengths were 35bp and 75bp, respectively. While most of the

reads of either set match the target length, an exponential drop off to shorter

read lengths is evident from Fig. 4.1. Typically the quality scores tend to

decrease towards the end of a read. If quality falls short of some minimum

score, the associated read is trimmed. As may be inferred from Fig. 4.1, the

reads of set 1 were trimmed by five bases at most, while those of set 2 were

truncated by up to 35 bp or half the nominal read length.

A rather low, about 5-fold coverage of the sequenced neochromosome made a

considerably fragmented assembly expectable. In consequence, 30463 contigs

with lengths of at least 100bp passed the internal coverage cutoff of Velvet.

About 80% of the contigs fall in the range 100 – 1000 bp. As illustrated by

Fig. 4.2, contig lengths are approximately exponentially distributed.

By way of read-contig-mapping (section 3.3.1) it was found that the major-

ity of read pairs, viz. 87% (set 1) and 91% (set 2), could not be aligned. The

fraction of pairs that could be fully mapped was 6% and 3%, respectively.

As for the rest, only one of the mates of a pair could be aligned (Fig. 4.3).

In essence, there are two reasons for utilization ratios such low. On the one

hand, reads belonging to contigs that fell short of the coverage cutoff used in

Velvet cannot possibly be aligned. On the other hand, many reads failed to
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Figure 4.1: Distribution of read lengths for set 1 (a) and set 2 (b).

align on account of the abundance of short contigs. More specifically, reads

not entirely belonging to a contig, but to some extent to a breakpoint inbe-

tween contigs, cannot be found by the alignment as conducted here. Small

though it may be, the read utilization rate still proved sufficient to produce

useful results.

Prior to analyzing the mapped pairs and inferring the connections they

are indicative of, the threshold – previously defined as the maximum allow-

able difference between expected and estimated read distance (cf. section

3.3.1) – had to be adjusted to fit with the data at hand. Hence, in a first
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Figure 4.2: Distribution of contig lengths.
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none mapped (87%)

one mapped (7%)

both mapped (6%)

(a)

none mapped (91%)

one mapped (6%)
both mapped (3%)

(b)

Figure 4.3: Utilization of read pairs in read-contig-mapping for set 1 (a) and set
2 (b).

run, a high threshold of 800 bp was chosen in order to permit very large

deviations from the expected read distance or rather insert size. The insert

size distribution of all pairs that could be unambiguously assigned to case

A3 – viz. the same instance of the same contig (cf. section 3.3.1) – is dis-

played in Fig. 4.4 (top) for both read sets. These distributions are regarded

representative of the complete read sets. The majority of pairs is halfway

symmetrically distributed within a range of ±150bp around the expected

insert size of 250bp. Surprisingly, a secondary mode is observed between

400 and 530bp. Bimodal distributions, which may be indicative of different

populations, never occurred in application testing. Hence, it would appear

not entirely fallacious to presume that the occurrence of the minor mode is

associated with the sequencing step carried out in the laboratory. A definite

cause, however, is not obvious. In consequence, the threshold was set to

150bp, corresponding to difference between expected distance and the lower

limit of the spurious mode.

Thereupon the adjusted threshold was used in conducting the actual read-

contig mapping as described in section 3.3.1. The distribution of insert sizes

of read pairs linking different contigs is presented in Fig. 4.4 (bottom) for

both read sets. As compared to the high threshold distributions (Fig. 4.4,
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top) they appear right-shifted by some 30bp. This reflects the k-mer size of

Velvet, as adjacent contigs overlap by up to k-1. Moreover, the number of

pairs with insert sizes ranging from twice the read length to 200bp increased.

This range corresponds to pairs connecting contigs that do not border on one

another. In these cases the estimated distance is too small as the distance

inbetween contigs is not accounted for.

Just about 5% or 1 out of 22 million pairs comprising the two sets of

0 100 200 300 400 500 600

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

insert size

nu
m

be
r 

of
 p

ai
rs

(a)

0 100 200 300 400 500 600

0

0.5

1

1.5

2

2.5

3
x 10

4

insert size

nu
m

be
r 

of
 p

ai
rs

(b)

0 100 200 300 400 500 600

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

insert size

nu
m

be
r 

of
 p

ai
rs

(c)

0 100 200 300 400 500 600

0

200

400

600

800

1000

1200

1400

insert size

nu
m

be
r 

of
 p

ai
rs

(d)

Figure 4.4: Distribution of insert sizes. Left: set 1, right: set 2; top: pairs
assigned to one contig (same instance), threshold 800bp, bottom: pairs linking
different contigs, threshold 150bp.

paired-end reads were successfully mapped to the contigs of the assembly.

The analysis of order and orientation of the contigs with respect to one an-
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other is thus based on just this fraction of reads.

In spite of this, the combined strategy of read-contig mapping and contig-

reference mapping revealed 188 fusion sites on the neochromosome. In the

contig-graph (for an example cf. Fig. 4.5), these fusion sites correspond to

connected contigs which were mapped to far apart locations or rather donor

sites on the human reference genome. Among these were 94 (intrachromo-

somal) breakpoints between distant locations on the same chromosome and

94 (interchromosomal) breakpoints between donor sites on different chromo-

somes. These results are detailed in Table 4.1 and Fig. 4.6.

a b c d e f g h i j k l m n o p q r s
a 11 1 5 3 1 1 3 24 1 5 1
b 1 1
c 1
d 5 6 1
e 11 1 1 1
f
g 7
h 15
i 2 4
j 1 6 2 3
k 16 4 5 1 3 5 1
l 1 1
m 3
n 4
o 2
p 1
q 1
r 10
s 5

Table 4.1: Identified fusion sites on the neochromsome. The entries give the
number of breakpoints between regions on chromosome i and chromosome j. Zero
entries were omitted for clarity, as were entries below the main diagonal since
N(i,j)=N(j,i).

Obviously, some chromosomes act more frequently as donor sites than oth-

ers. This is particularly true for chromosomes a and k, which were heavily

involved in both, intra- (a:11, k:16) and interchromosomal breakpoints (a:

45, k: 62). The results hint to such translocation hotspots.

A biological interpretation is beyond the scope of this work. Moreover, on

account of a non-disclosure agreement the identified fusions and their loca-

tions must not be revealed here in a more precise fashion. In particular, the
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chromosomes encoded here by characters a through x do not match their

natural numerical order.
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Figure 4.5: A subgraph of the contig-graph layed out using Graphviz.
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Figure 4.6: Indentified fusion sites on the neochromosome. The chromosomes
are denoted a through x and displayed in disturbed order as to their natural
numerical sequence. Lines connecting different chromosomes represent interchro-
mosomal breakpoints, while dead-end lines stand for intrachromosal breakpoints.
Line thickness is proportional to the number of breakpoints. The underlying data
are detailed in Tab. 4.1. Fig. generated using Circos [Krzywinski et al., 2009].
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5 Concluding remarks

In this study we proposed a strategy to identify and characterize structural

rearrangements of genomes in comparison to a given reference. This strat-

egy represents a chain of analysis composed of, not only public domain ap-

plications (Velvet, Bowtie, BLAST), but also self-developed tools, in order

to postprocess, interrelate, and interpret intermediate results of the former.

The pipeline of analysis was implemented in Java, validated through syn-

thetic datasets with known properties, and eventually applied to paired-end

sequencing data from a WDLPS neochromosome.

After an assembly of the sequencing data, the paired-end reads are aligned

to the resulting contigs, followed by an alignment of the contigs to the ref-

erence. The contigs, read-contig alignments and contig-reference alignments

are then utilized in the following way:

Based on an analysis of the read-contig alignments a contig-graph is con-

structed representing the different connections between contigs. The contig-

reference alignments are analyzed in order to locate the origin of contigs or

fractions of them on the human reference genome. The obtained information

is added to the contig-graph. Finally, interesting connections, viz. those

between contigs aligned to distant locations on the human reference genome,

are extracted from the contig-graph.

This chain of analysis was designed and implemented to investigate the struc-

ture of WDLPS neochromosomes. Synthetic datasets were modelled after

realistic data properties and used, not only in debugging and validating the

implemetation during the phase of development, but also in assessing the

feasibility of the chain or its components. After successful completion of sev-
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eral test runs as to its structural and functional integrity the full chain of

analysis was applied to sequencing data of a WDLPS neochromosome.

Most importantly, a search of the final contig-graph revealed 188 breakpoints

between components of different origin on the normal chromosomes. Among

these 94 were associated with different regions on the same chromosome. The

remainder of 94 breakpoints occurred between regions from different chro-

mosomes.

These breakpoints are likely to comprise gene alterations that may contribute

to the abnormal and malignant behaviour of the tumour cells. Thus, the fur-

ther characterization of the breakpoints can provide valuable information,

not only aiding diagnostics and therapeutics, but also helping to understand

the underlying mechanisms of cancer development. However, the biological

analysis needed in this regard is beyond the scope of this thesis.

Even though the strategy of analysis was developed and implemented on the

background of WDLPS, it is applicable to any situation in which the struc-

ture of a target sequence is to be analyzed as to differences to a reference

genome. Among such applications are, for instance, other cancer genomes

that feature rearrangements contained inside the normal chromosomes.

Some improvements are conceivable, but had to be disregarded in the cur-

rent setup on account of time considerations. In view of the fact that about

90% of the read pairs had no alignment on the contigs, the data utilization

ratio is no doubt quite low, but not unusual on the background of the large

number of short contigs. A higher coverage to be realized in the laboratory

would reduce this number towards fewer and longer contigs, which in turn

would make for a better utilization ratio. Another measure towards this

objective would consist in accounting for breakpoints between contigs when

mapping the reads. Specifically, by defining breakpoint regions of twice the

read length for at least such contigs that are identified as adjacent to one

another, a significant increase in data utilization could be realized. More-

over, low coverage contigs, which presently are filtered out through Velvet’s

automatic coverage-cutoff, could be accounted for.

Similarly, a considerable fraction of contigs could not be assigned to their

origin on the human reference genome. The reason here is, that the heuris-
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tics postprocessing the BLAST alignments is not yet capable of solving more

intricate cases.

Finally, it would appear worthwhile to extract information from Velvet’s full

de Bruin graph instead of analyzing the contigs file, only. Such additional in-

formation, however, is not easily accessible in a PC environment, and, hence,

was reconstructed here not in whole, but in part, after all.
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