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Abstract

This diploma thesis was written within the scope of my work on a project in the Department
of Restraint Systems at Siemens VDO Automotive AG in Regensburg, Germany from March
26 until September 28, 2007.

The security requirements of motor vehicles in the road traffic rises up gradually nearly
every year due to the massively increasing number of cars, the continuously becoming faster
automobiles and the steadily growing amount of safety regulations. With the objective of
fulfill these requirements, automotive suppliers like Siemens VDO work with the utmost care
on the implementation of restraint systems together with motor vehicle manufacturers to
protect the driver, passengers, pedestrians and other road users.

Nowadays, restraint systems like multistage drivers’ and passengers’ airbags, belt tensioner
and side airbags can be found in almost every modern car. Many steps in the prototypical
vehicle development are necessary to come up with an absolutely reliable restraint system.
The embedded systems have to be adopted and calibrated to every type of vehicle and many
different crash scenarios.

The crash data usually contain conflicts which are equivalent to some requirements that are
hard to fulfill. The discussions with the customers about changes of demands to solve these
conflicts commonly take several weeks. A conflict found at the end of a project very often
entails the project’s deathblow.

In my thesis, I will concentrate on conflict analysis in order to improve and accelerate the cal-
ibration process. I will present machine learning algorithms based on support vector machines
that try to find conflicts in crash data.

Zusammenfassung

Diese Diplomarbeit entstand im Rahmen meiner Arbeit an einem Projektes im Zeitraum vom
26. März bis zum 28. September 2007 in der Abteilung Restraint Systems bei Siemens VDO
Automotive AG in Regensburg.

Die Sicherheitsanforderungen aller Fahrzeuge im Straßenverkehr nehmen von Jahr zu Jahr
aufgrund des massiv steigenden Verkehrsaufkommens, der immer schneller werdenden Au-
tos und der stets wachsende Anzahl an Sicherheitsbestimmungen stetig zu. Um diesen
Anforderungen gerecht zu werden, arbeiten Automobilzulieferer wie Siemens VDO mit den
Fahrzeugherstellern akribisch an der Implementierung von Rückhaltesystemen zum Schutz
von Fahrzeuginsassen, Fußgängern und weiteren Verkehrsteilnehmern.

Rückhaltesysteme wie mehrstufige Fahrer- und Beifahrerairbags, Gurtstraffer und Seiten-
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airbags lassen sich heutzutage beinahe in jedem modernen Auto finden. Um jedoch ein
absolut zuverlässiges Rückhaltesystem zu entwickeln, sind viele Schritte in der prototypi-
schen Entwicklung des Fahrzeuges von Nöten. So müssen die eingebetteten Systeme auf
jeden einzelnen Fahrzeugtyp und auf sehr viele verschiedene Crash-Situationen angepasst
und kalibriert werden.

Für gewöhnlich enthalten die Crash-Daten sogenannte Konflikte. Dabei handelt es sich um
Anforderungen, die nur schwer oder gar nicht zu erfüllen sind. Die Diskussionen über deren
Änderungen mit den Kunden, um diese Konflikte zu lsen, dauern normalerweise mehrere
Wochen. Ein Konflikt, der erst am Ende eines Projektes gefunden wurde, ist sehr häufig
gleichbedeutend mit dem Todesstoßes des Projektes.

In meiner Arbeite werde ich mich auf die Konfliktanalyse konzentrieren um den Kalibrierungs-
prozess zu verbessern und zu beschleunigen. Ich werde maschinelle Lernverfahren basierend
auf Support Vector Machines vorstellen, die versuchen, Konflikte in Crash-Daten zu finden.
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ii Christian Moewes



“If people do not believe that mathematics is simple, it is only
because they do not realize how complicated life is.” [6]

John von Neumann
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1 Introduction

This thesis proposes methods for the discrimination of vehicle crash events by means of
support vector machines. Before explaining these methods thoroughly, we first have a look
at the given problem definition that we try to solve.

In this chapter a basic introduction to the topic of the thesis is given. First of all, the impor-
tance of vehicle safety is concisely presented in the first section. After that, in Section 1.2 the
development of a restraint system is briefly described. The main motivation of this thesis is
given in Section 1.3. In addition, a short history of the company Siemens VDO Automotive
AG can be found in Section 1.4 since the suggested methods of this thesis were developed
together with the automobile supplier in Regensburg, Germany. Finally, an overview of the
thesis in Section 1.5 concludes this chapter.

1.1 The Importance of Vehicle Safety

Motor vehicles are used for transport to a huge degree. Especially this means of transportation
has a major drawback in terms of the number of motor vehicle crashes and their effects like
crash costs, accidental injuries and automobile fatalities. To give an example, in 2001,
the costs of road crashes sums up to more than 170 billion Euros in the European Union.
Moreover, more than 38,000 EU citizen lost their lives causes by these crashes. Due to that,
transport crashes were the leading cause of death and hospital admission for citizen under
50 years in the same year [2].

To give a more recent example, Figure 1.1 shows the road fatalities in the European Union in
the year 2005. The map expresses road fatalities per million population of every country of
the EU. Not surprisingly, the interpretation of this figure can lead to manifold claims about
country-specific conditions of drivers, roads, vehicles and so forth. Without analyzing the
shown numbers in detail, it becomes clear that a complete prevention of road fatalities is a
hopeless mission.

Nevertheless, a decrease of these numbers and their consequences is obviously a necessity for
the economical, ethical, medical and last not least engineering sake. The importance of safe
vehicles should be a major concern and represents an approach with a striking effect. In order
to make vehicles safer, a number of new devices have been installed. Active safety facilities,
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1 Introduction

Figure 1.1: Road fatalities in Europe per million population in 2005 [3].
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1.1 The Importance of Vehicle Safety

for instance, purpose to lower the possibilities of a crash event. Popular representatives like
the electronic brake distribution (EBD) and the anti-lock breaking system (ABS) perform
very well.

Another group of devices which are referred to passive safety facilities aims to reduce the
consequences in a crash event in terms of injury severity. Safety belt and crushing zone are
only two examples. Figure 1.2 shows the phases of a crash which are directly connected to the
type of applied safety devices. Active safety devices might be applied to the driving dynamic
by the automobile system in order to prevent crashes, whereas passive safety facilities come
into play when a crash occurs to lower the crash consequences.

Figure 1.2: Phases of a crash [4]. In normal, critical or pre-crash situations, active safety
systems may be used by the driver. On the other hand, passive safety systems
are triggered automatically whilst in- and post-crash situations, respectively.

The combination of passive safety devices that restrain the occupant during a crash is named
restraint system. The task of a restraint system is to reduce the risk of severe or fatal injuries
by consume the occupant’s kinetic energy. Since their introduction, safety belt and airbag
are the best known facilities.

Since 1973, when the first airbags could be found as an accessory in the Chevrolet Impala,
the restraint system of safety belt and airbag has become increasingly reliable, also due to
innovations of additional facilities like the belt tensioner. This device prevents a relaxed belt
shortly after a crash is observed.

In the nineties of the last century, restraint systems with only one operation stage could be
found in automobiles. Occupant’s seating position, mass and age do have an influence on
the crash consequences concerning injuries [22], however, a single operation mode might not
be sensitive enough in most of the crashes. Moreover, the velocity has a major impact on
the risk of injuries. It may even happen that different crashes set conflicting demands on
the restraint system. Furthermore, severe or even fatal injuries can be caused by a restraint
system itself.

Thus multistage restraint systems are in focus of research and development today. By
heuristics, the most suitable stage of operation is chosen when the crash is discovered. These
heuristic rules are based on measurements of occupant and crash features. For instance, it
is necessary to correctly set the point of time when the airbag has to be deployed.
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1.2 The Development of Restraint Systems

In fact, it is a very ambitious task to develop a restraint system. There are a dozens of features
that come into play. The characteristics of automobiles differs a lot from each other. The
courses of crashes are thence different as well. Last but not least the characteristics of the
occupant have a big influence on each restraint system.

At the end of the development process, possible changes to the automobile or the restraint
system are exceedingly costly. Hence the development has to be processed extremely care-
fully. Another crucial point is that factors like expenses, durability, comfort, size, mass and
ergonomics are in conflict with each other and with the operation of the restraint system as
well.

Figure 1.3: The development cycle of a restraint system [4].

Figure 1.3 shows the process of a restraint system in a cycle. Presuming biomedical re-
quirements and accident statistics, a safety concept is developed. In this step without any
prototypical automobile [33], simulations are run to define the restraint system. Here, the
geometry of the interior and the seating position are defined as part of the car platform. The
requirements for the new restraint system as input for the simulation model are given by the
customer. For instance, the customer determines a requested time to fire (RTTF) which
is an upper limit for a certain restraint system when it has to be activated after a crash is
detected.

Then the first crash test with a prototype and its pre-optimized restraint system is performed.
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1.2 The Development of Restraint Systems

Its results generate the input for a subsequent validation crash test. The general behavior
of the developed restraint system depends on the amount of sled tests which are performed.
Fine tuning is performed together with both sled tests and simulation. Finally the restraint
system is confirmed by a crash test.

The goal of that development is a restraint system which can face nearly every crash and
occupant for the specified automobile platform. On the other hand, the system has to meet
all other criteria like expenses, durability etc. In order to aim the requirements and to develop
such a system, lots of different tests like numerical simulations, real world component tests
and full scale crash tests have to be performed.

1.2.1 Crash Tests

Almost all crashes take place in a fraction of one second. In this short time, a huge number
of physical processes occur. This section first clarifies important aspects of a crash, the
restraint system and the occupant, respectively. After that, relevant characteristics of a
crash are cleared up.

Frontal crashes cause the most fatal injuries with more than 50% [5]. Crash tests were
introduced to have a legislative basis for the term of a minimal safe car. All crash tests are
standardized and take place under specified conditions with crash test dummies as passenger
substitutes. These crash tests are performed by car manufacturers and insurance institutes
as well in order to reveal weaknesses to the public.

Real world crashes brought out that mainly 4 parameters determine the severity of occupant
injuries: the relative velocity, the relative angle, the relative overlap and the effective stiffness
of the crash partners. Thus various crash tests have been developed. Figure 1.4(a) shows a
basic framework of a frontal crash test as it is performed by EuroNCAP [1]. In this scenario,
the relative angle α is 0, the relative velocity v0 amounts 64 km/h and the relative overlap
or offset ∆L/L is equivalent to 40%.

By changing these 4 parameters, different types of crash tests can be obtained. For instance,
a deformable or a rigid barrier can be chosen either on the left or right side of the automobile
front. Crash tests with rigid barriers are referred to wall crashes as it is shown in Figure 1.4(b).
Whenever the barrier is deformable, ODB (offset deformable barrier) crashes are performed.
The offset ∆L/L is usually either 40% or 100%. An ODB crash test tries to emulate a crash
where two cars crashes frontal against each other.

If the relative angle is different from zero (usually 30 degrees), so-called angular crashes are
executed. The impact velocity can have different values normally starting from 15 km/h up to
80 km/h. One also distinguishes between so-called low- and high-speed crashes, respectively
depending on v0.

Christian Moewes 5



1 Introduction

(a) (b)

Figure 1.4: EuroNCAP [1] frontal crash tests [16]. The left figure shows the general config-
uration of a frontal crash with 40% overlap. On the right-hand side a crash test
with a rigid barrier is shown. It is the analog to wall crashes.

Of course, apart from wall, ODB and angular crash tests, there are many more crash scenarios.
The Allianz Zentrum für Technik (AZT) GmbH (http://azt.allianz.de) developed a very
important type of crash test more than 20 years ago. The so-called AZT (Danner) crash
test is performed by v0 = 15km/h and ∆L/L = 40%. In process of time, this test became
standard in many countries.

Whenever an AZT test is performed, no restraint system shall be triggered since it might
cause heavy injuries compared to those resulting from a high-speed crash. Figure 1.5(a)
shows an example of such an AZT crash test. Such a low-speed crash can occur in many
situations and it has to be ensured that neither airbag nor belt tensioner will trigger. Usually,
a car can be repaired much easier after an AZT crash than after a high-speed crash since
the outer damages to the car are mainly smaller dents.

(a) (b)

Figure 1.5: AZT (a) and frontal pole crash tests (b). The former type of crash is performed at
14 up to 16 km/h. Neither airbag, nor belt tensioner shall fire at these velocities.
A frontal pole crash test shall reveal insights into frontal crashes with trees. (Both
pictures are taken from [16])

6 Christian Moewes
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1.2 The Development of Restraint Systems

Accidents where a car hit a tree are emulated by so-called pole crash tests. Basically front
and lateral pole crash tests are performed. Figure 1.5(b) gives a real-world example of a
frontal pole test. A lateral pole test, for instance, is shown in Figure 1.6.

Figure 1.6: Lateral pol impact test [16] to gain information about real-world lateral tree
crashes.

Aside from ODB, angular, wall and AZT crashes, there exists another big group of tests that
are referred as misuse tests. This collection of tests tries to includes real-world scenarios
where no restraint system shall be triggered. This is due to the fact that there might be
another crash event directly after a misuse. This type of accidents is called concatenated
crash. The latter event of such a concatenated crash usually requires the activation of passive
safety devices.

Before we will explain why a misuse normally does not trigger any restraint system, some
types of misuse crashes are briefly noted by some examples: driving on road of cobblestones,
driving over a curb, road drop off, driving into a pothole, deer impact, wild boar impact,
crash with cats or dogs, hammer blow hits car, steel or wooden beam falls onto automobile,
etc.

Suppose that a restraint system like the airbag and belt tensioner were triggered after a
misuse event, say a wild boar impact. According to that, there won’t be any restraint for
the driver or passenger if a severer crash (e.g. a collision with a tree) is subsequent to the
misuse. Therefore every misuse is commonly treated like an AZT crash in terms of the fire
decision.

The challenge is to distinguish between fire and no-fire events by a machine. Consequently,
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1 Introduction

there have to be devices situated in the automobile that allow to draw conclusions about
the type of crash event. These devices that are called sensors will be discussed in the next
section in short.

1.2.2 Sensor Equipment of a Modern Car

Every modern car is equipped with a bunch of sensors and embedded systems. As might
be expected, the question if and how a restraint system shall activate is answered based on
sensor signals. The decision itself is made in the so-called tunnel-area right between driver
and passenger seat. The electronic system for decision making is called airbag control unit
(ACU).

The ACU, as shown in Figure 1.7(a), is the heart of the smart airbag system. Here, the system
processes every incoming signal of each sensor. Based on that, potential commands are
emerged. Moreover, diagnostics on the entire safety system are carried out continuously.

(a) (b) (c)

Figure 1.7: ACU on the left-hand side, sensor positions in the car shown in the middle,
and occupant classification mat on the right hand side. (All pictures are taken
from [4])

Figure 1.7(b) shows where the sensors and the ACU can be found in a standard automobile.
The ACU itself contains a collection of internal sensors that, among others, record big changes
of acceleration of the car. Further signals may be needed, however, to support or suppress a
fire decision.

Such a signal can be obtained by a weight classification mat as shown in Figure 1.7(c). It is
used to adapt the restraint system to the passenger. The airbag might be deactivated when
the seat is occupied by a child below a predefined weight. It is used for multistage airbags
as well to have an optimal passenger protection.
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1.2 The Development of Restraint Systems

A possible side crash detection is carried out by a combination of two types of sensors.
Acceleration satellites (G-Sats) measure the acceleration in the vehicle structure during a
crash on the left and right side of the car. A modern G-Sat that has been developed by
Siemens VDO is shown in Figure 1.8(b).

Whilst G-Sats are usually mounted in the right and left center pillar, the other type of sensor
for side crashes can be found in the doors of the car. So-called pressure satellites (P-Sats)
(see Figure 1.8(c)) measure the inner pressure of the doors continuously. Since a side impact
will commonly reduce the inner volume of a door, the increasing pressure is a reliable check
for it.

As front crashes occur much more often that side or rear crashes, it might be favorable
to have another kind of sensor which is very sensitive to that specific type of crash. The
so-called early crash sensor (ECS) is located in the vehicle’s front end section. It provides
information during the course of the accident. It can be used to detect a crash very early1.

(a) (b) (c)

Figure 1.8: Common sensors of a modern car [4]. The left-hand figure (a) shows an early
crash satellite (ECS). In the middle figure (b), a G-Sat is shown. The right-hand
figure (c) shows a P-Sat.

When full scale crash tests are performed to gain physical data, the used sensors in the car
differ very much in prices, value ranges and data resolution from the ones in manufactured
vehicles. The reasons and consequences of this procedure are manifold. As every prototypical
automobile platform is changed during the development process2, series sensors with low
value ranges and a inferior resolution would be a reason for severe problems in data3. On the
other side, the costs of sensors in mass-produced vehicles are a tiny fraction of the expenses
for so-called reference sensors in a prototype4.

1Note that standard middle and lower-class cars, however, usually do not feature any ECS since they result
in a higher price of the car.

2Prototypes might get a heavier engine, a stiffer front end section. Motor vehicle manufacturers even vary
the sensor positions. These and further platform changes have a heavy impact on sensor signals.

3A sensor with low value range might suffer from saturation. Crucial signals may just be noticed by a high
resolution. Thermic noise or offset addition can be other difficulties.

4One expensive sensor can cost up to 1000 Euros, whereas all sensors for restraint systems in the final
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On the other side, restraint systems in a manufactured car have to deal with data coming from
series sensors. As the calibration is carried out in the prototypical phase of the development,
data generated by reference sensors will not have most of the problems described above.
Thus crash test data have to be transformed in order to imitate sensors that can be found in
ready-made automobiles. Common transformations to simulate data gained by series sensing
are the following two examples. Usually the data resolution is lowered from 10 kHz down to
4 kHz. Moreover, the value range of acceleration is changed from ± 500 down to ± 755.

The transformed data is a necessity for the whole calibration process. It is demanded for all
calibration steps that follow after crash tests with reference sensors. Hence it is the basis for
the calibration of the ACU which will be clarified in the next section.

1.2.3 Calibration of the ACU

The calibration of the electronic airbag control unit is crucial to the performance of the
restraint system. The calibration belongs to the engineering field of passive safety. Even
though it is already well established, passive safety is a very dynamical field. It must cope
with an increasing complexity of customer requirements due to new functionality and requests
for shorter development times.

reference
sensors

data
preparation

feature
selection

calibrationtune-upfinal
validation

Figure 1.9: Flowchart of the calibration process.

One calibration process can take several weeks depending on the complexity of the given
task. Figure 1.9 shows a flowchart of the complete calibration process. Raw data coming
from the reference sensors has to be prepared to simulate cars with series sensors.

Since not all different environmental scenarios can be performed by crash tests due to their
extreme expenses, every crash signal is scaled by different factors, e.g. {±5,±10,±15,±25}.
This process has been applied in practice with big success. Moreover, the scaled versions
also ensure a certain robustness of the ACU against unseen signals. Thus one single crash
test usually leads to a set of different scaled crash tests.

Features are computed subsequently out of all scaled raw data signals. Then a good set of
features has to be found by feature selection. The chosen features can differ from the chosen

automobile might sum up to a price of 100 Euros.
5Note that other transformations are possible as well.
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automobile platform, its setup, the used sensors, and their positions in the vehicle.

The next step is the calibration of the deployment algorithm in the ACU. The algorithm for
the fire decision has to be calibrated to satisfy every RTTF. No-fire crashes shall never fire
since this might result in fatal injuries caused by the restraint system. So-called must-fire
crashes have to be deployed by the ACU. A benefit is gained by correct discrimination of
so-called may-fire crashes that need to be correctly classified in any case. Before the car with
the calibrated restraint system is finally validated by a crash test, the deployment algorithm
is tuned up in order to improve speed and to increase the number of correctly recognized
crashes. For most platforms, however, not all requirements can be met completely.

The current technology used in the ACU is a fuzzy-rule based algorithm with a certain
number of input variables. The corresponding set of fuzzy rules has to be constituted by
human experts. Data analysis tools must be applied to find conflicting crashes that cannot
be discriminated correctly. Finding critical crashes at the end of a project is equivalent to its
deathblow.

As a consequence, a fast analysis of conflicts is necessary before the actual process of cali-
bration starts. The next section will introduce the fundamental concept of one approach to
conflict analysis. All ideas presented and implemented in the following chapters are based on
that concept.

1.3 Toward Conflict Analysis

The fulfillment of customer goals can only be achieved by both streamlining the conventional
development methods as well as by introducing innovative cutting-edge techniques. Among
the new approaches being explored at Siemens VDO Restraint Systems is the application of
support vector machines (SVM). They are applied to the analysis of crash sensor data with
a minimum user supervision.

Their task is to produce a fast and reliable assessment for the potential of discrimination
between so-called fire and no-fire events. In a fire event the vehicle restraint system must
be triggered to protect the passengers. On the other hand, in a no-fire event the restraint
system shall not be activated.

Customer requirements cannot always be fulfilled due to their complexity. An incorrectly
classified crash constitutes a conflict which has to be analyzed. Early detected conflicts can
be clarified with the customer much easier than conflicts that are discovered at the end of a
project. It becomes clear that conflict analysis is an important step even before the actual
calibration can begin.

Siemens VDO Restraint Systems together with Siemens Corporate Technology (CT) have
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developed a joint project for conflict analysis. The goal is to create a learning machine that
is capable of discriminating between a fire and a no-fire event. As a result of this cooperation
a data driven optimization tool (DDO) has been developed. It implements the methodology
of support vector machines and is discussed more in detail in the next chapter.

1.3.1 Focus of this Thesis

The motivation of this thesis is to investigate new ideas that will lead to a further development
of the SVM approach. The main challenge is to apply SVM to the discrimination of vehicle
crash events. Within this frame, on the one hand, the thesis comprises investigations based on
already existing improvement ideas. On the other hand, however, new promising techniques
based on SVM are modeled for the given scenario as well.

The machine learning tools that are contributed in this thesis aim to lower the development
time of calibration procedures by observing conflicts in an early phase of the project devel-
opment when the calibration has not started yet. Moreover, they shall help and support the
development of a restraint system. Although calibration tries to find a rule-based system for
all kinds of crashes (see Section 1.2.1), this thesis only embraced a subset of them. Basi-
cally, we restrict the problem to discriminate crash events on the following types of frontal
crashes:

• AZT (Danner) tests

• wall crashes

• angular crashes

• ODB crash tests

Before an overview of the thesis is presented, the next section will give a short history of
Siemens VDO and its department Restraint Systems.

1.4 Siemens VDO Automotive AG

Siemens VDO is a company with a history that reaches far into the past. In this section
we will briefly name the most important milestones that leaded to one of the best and well
known automotive suppliers.
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In 1847, Siemens & Halske founded the Telegraphen-Bauanstalt in Berlin, Germany. As a
revolution at that time in 1905, the Siemens Schuckert-Werke started series production of
“Victoria”, the world’s first electric automobile.

In 1902, Otto Schulze patents the eddy-current speedometer. The speedometer is marketed
in Germany from 1908 by the O.S. Autometerwerke E. Seignol in Frankfurt/Main. Eighteen
years later in 1920, Adolf Schindling founds the OSA-Apparate GmbH together with Georg
Häußler and Heinrich Lang. In 1923, the first OSA speedometer is built. In 1925, the
company is renamed OTA Apparate. In 1928, it merged together with the Deuta-Werke to
form VDO Tachometer AG – Vereinigte Deuta OTA, abbreviated to VDO. The brand name
VDO is created in 1929.

In the year 1951, the company is renamed VDO Tachometer Werke Adolf Schindling GmbH.
In 1957, the 1st plant abroad was built in Australia (VDO Instruments Australia Ltd., Mel-
bourne). Three years later, the 2nd plant abroad was installed in Brazil (VDO do Brasil, Sao
Paulo).

In 1966, Siemens & Halske, Siemens-Schuckert-Werke and Siemens-Reiniger Werke merge to
form Siemens AG. In 1972, the VDO Tachometer GmbH is renamed VDO Adolf Schindling
GmbH. In 1973, the company becomes a public limited company: VDO Adolf Schindling
AG. Its shares are traded on the stock exchange in 1986.

In 1989, Siemens establishes the independent Automotive Engineering business unit. In 1991,
Mannesmann takes a majority shareholding in VDO Adolf Schindling AG. Finally, VDO is
taken over completely by Mannesmann AG in 1994. Another three years later, the company
is renamed Mannesmann VDO AG.

In 2000, Siemens AG spins off the Automotive Engineering business unit: Siemens Automotive
AG. Just one year later, the merger between Siemens Automotive and Mannesmann VDO
took place to form Siemens VDO Automotive AG.

In 2004, Siemens VDO Automotive AG acquires the former Chrysler electronic plant in
Huntsville, USA. In 2006 Formal integration of Siemens VDO Automotive AG into Siemens
AG as Siemens VDO Automotive Group: Siemens AG - Siemens VDO Automotive.

This year on July 25th, the German wheel producer Continental has taken over the Siemens
VDO for approximately 11.4 billions. Although SV was supposed to be listed at the stock
exchange market, Siemens AG decided to sell one of its 10 divisions. Now, SV and Conti
form the 5th biggest automotive supplier in the world with nearly 140,000 employees and
annual sales of around 25 billion Euros6.

Nowadays, Siemens VDO is organized into the following 4 sections:

6The numbers are based on statistics of the year 2006.
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• Powertrain

• Interior Electronics & Infotainment

• Chassis & Safety

• Commercial Vehicles

The section Chassis & Safety moreover is separated into the divisions Safety & Chassis
Electronics and Motor Drives. The former division is divided into the undermentioned 5
departments.

• Restraint Systems

• Chassis Systems

• Washer Systems

• Advanced Driver Systems

• Electronic Wedge Brake

The next section will give a short overview of Restraint Systems as this thesis is based on a
work in Regensburg.

1.4.1 Department of Restraint Systems

The department of Restraint Systems basically deals with the research and development of
crash sensing electronics, sensor satellites, occupant sensing and pedestrian protection. Its
headquarters are situated in Regensburg, Germany. Figure 1.10 shows the manufacturing
and development centers of Restraint Systems.

The newest key innovative idea of Restraint Systems is the crash impact sound sensor (CISS).
The signals produced by this sensor enable an earlier discrimination of a fire event. The earlier
a reliable fire decision can be made, the lower the probability for fatalities.

With its technologies for passive safety, Restraint Systems holds the leading market position
worldwide.
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Figure 1.10: Restraint Systems worldwide: electronic manufacturing and development cen-
ters [4]

1.5 Overview of this Thesis

Chapter 2 gives a summary of problem definitions and scientific publications that deal with
them. Moreover, it shall motivate and classify the basic approach which was chosen for this
thesis. Especially the concept of how to learn from examples is introduced in Section 2.1.
Following, basic approaches for time series analysis are given in Section 2.4.

In Chapter 3, techniques and procedures that are utilized in the context of this thesis are
specified. In particular, the concept of support vector machines will be elaborated in Sec-
tion 3.3.

Chapter 4 deals with the implementation of the thesis and is based on the fundamentals
that were introduced in the chapter before. Section 4.1 delineates the overall ideas of the
implementation in detail. Section 4.2 defines fundamental concepts for conflict analysis.

In Chapter 5, the proposed methods are evaluated experimentally on a real-word application.
In the used crash database, the proposed methods lead to good accuracies and low model
complexities compared to the existing discrimination method at Siemens VDO.

In the final Chapter 6 we will conclude the thesis and motivate possible improvements and
extensions.
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2 Related Work

The goal of this chapter is to give an overview of related problem settings and a selection
of ideas that study them. Thus a potential categorization of this work shall be possible.
Presentation and comparison of the different thoughts stand in the foreground of the general
summary. For deeper insights into the ideas, we will refer to literature and Chapter 3,
respectively. There, ideas on which this thesis is based on are discussed more in detail.

The problem to discriminate vehicle crash events automatically is essentially classified into
the field of machine learning. In first instance, crash events are observed whilst real-world
crash tests. Based on these data, more or less complex rules for triggering restraint systems
are derived empirically by human experts. Hence it is straightforward to construct a machine
(an algorithm) that solves this task by learning from given examples.

The whole concept of learning from examples is formulated in statistical learning theory which
has been developed by Vapnik [36]. In this framework, one basically considers three statistical
problems1. Besides the problems of regression and density estimations, pattern recognition
is handled by this theory as well. This task is also know as classification problem.

Before we will introduce the problem of pattern recognition in detail in the next chapter, we
will shortly discuss about the general model of learning from examples in Section 2.1. We
will basically follow the formulations and notation as they can be found in [36].

However, the discrimination of vehicle crash events is a special pattern recognition problem.
This is due to the fact that certain assumptions of the general setting of pattern recognition
does not hold in this case. In Section 2.1.2, we will roughly explain which assumptions make
this problem particular.

A tool, called DDO, that was developed by SV and CT already establishes a solution to the
problem of crash discrimination. Implementation details how DDO discriminates fire crashes
from no-fires is given in Section 2.3.

In contrast to the latter approach to pattern recognition where no temporal coherence is used,
it is also possible to look at crashes as sequences in time, so-called time series. This approach
and some selected solutions to it are outlined in Section 2.4. To finalize this chapter, we will
summarize all presented ideas in Section 2.5.

1Note, however, that there are several more than just three statistical scenarios.
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2.1 Learning From Examples

Vapnik [36] describes very elegant a general model how to learn from examples. This model
consists of three elements. First of all, there exists a generator G which influences the
environment where our learning machine shall operate. It generates data vectors x ∈ X
independently and identically distributed (i.i.d.). This process depends on an unknown prob-
ability distribution function F (x).

The second element of the model is the so-called supervisor’s operator S (short supervisor)
which receives every vector x as input and outputs some values y. Like the probability
distribution function F (x), the operator S is unknown as well. However, we can state that
the operator S exists and does not change. Hence every output y on vector x is returned
according to the conditional probability distribution F (y|x).

The last element in Vapnik’s model is the learning machine LM. It observes l pairs

(x1, y1), . . . , (xl, yl) ≡ z1, . . . , zl (2.1)

which consists of input vectors x and the supervisors’s output y. We will refer to these pairs
as training set. This set itself is drawn randomly and independently by the unknown joint
probability distribution F (x, y) = F (x)F (y|x). In the learning step, the machine tries to
produce a suitable operator that is a good approximation to the supervisor’s operator S.

This operator (or function) that imitates the supervisor is chosen by the machine from
an implemented set of possible functions whilst the learning process. Thus the learning
machine will choose a function from a set of admissible functions {g(z) | z ∈ Z} where
z corresponds to our pair (x, y) and Z is a subset of the vector space Rn. Moreover, a
functional R = R(g(z)) as quality criterion is defined by the expected loss over the whole
probability distribution function,

R(g(z)) =

∫

L(z, g(z))dF (z), (2.2)

where the function L(z, g(z)) is called loss function. By minimizing the functional R(g(z))
without knowing F (z) but having z1, . . . , zl, the learning problem would be solved.

Vapnik [36] describes that one cannot directly minimize Equation (2.2). Instead of the set
of functions {g(z)}, one uses a parametric form {g(z, α) | α ∈ Λ}. With this, the functional
(2.2) can be written as
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R(α) =

∫

Q(z, α)dF (z), α ∈ Λ, (2.3)

whereas

Q(z, α) = L(z, g(z, α)) (2.4)

is again our loss function. By choosing an appropriate function Q(z, α0) out of the set
{Q(z, α) | α ∈ Λ}, Equation (2.3) shall be minimized. This cannot be done analytically
since the probability distribution function is unknown and only the observations z1, . . . , zl are
given. A way how to solve this problem is the principle of empirical risk minimization (ERM)
which will be discussed in Chapter 3, Section 3.1.1.

As it seems to be clear, the problem of minimizing (2.3) given a random independent sample is
rather general. It covers three fundamental statistical problems: pattern recognition, regres-
sion estimation and density estimation. In our environment of crash tests, the discrimination
of crash tests into fire and no-fire events does belong to the problem of pattern recognition.
Further explanations about this problem will be given in Chapter 3, Section 3.1.

With the objective of categorizing an unseen pattern into a certain class, the new pattern
should be similar to a certain degree to the training set (2.1). Hence a similarity measure is
needed to compare patterns with each other2. The type of similarity measure that is used
for SVM is discussed shortly in Section 2.1.1.

The problem of pattern recognition based on given examples can be solved very efficiently
by various algorithms. One very promising method that started to be accepted in several
communities in the mid-nineties is named support vector machine (SVM). As nearly all ideas
that can be found in this thesis are based on SVM, a detailed explanation about this specific
learning machine can be found in Chapter 3, Sections 3.2 and 3.3, respectively.

A standard version of a support vector machine for classification is already implemented into
a tool abbreviated DDO. It was developed by a joint project between Siemens VDO Restraint
Systems and Corporate Technology. Since the task was to improve and adopt DDO in order
to support the calibration process, a concise explanation about this tool will be given in
Section 2.3.

2.1.1 Measuring Similarity of Patterns

One approach of measure the similarity of patterns is to consider a function

2Similarity for the class labels is straightforward since two labels can be either identical or different.
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K : X × X → R, (x, x′) 7→ K(x, x′). (2.5)

The similarity of the given patterns x and x′ is represented by a real number. The function
K should be symmetric (K(x, x′) = K(x′, x) ∀x, x′ ∈ X ). Such a function is called
kernel [24, 10, 17].

A simple similarity measure is the dot product of two given vectors x, x′ ∈ R
n that is defined

as

〈x, x′〉 ≡
n
∑

i=1

xi · x′i. (2.6)

This similarity measure is not appropriate for most problems and hence other, more complex
measures are needed. Even the length of a vector x, however, can be computed with the dot
product by Pythagoras,

||x|| ≡
√

〈x, x〉. (2.7)

Since patterns can be anything e.g., elements of a multivariate vector space or words, it is
necessary to map the patterns to vectors in some dot product space H by

Φ : X → H, x 7→ Φ(x). (2.8)

Remark that x ∈ X can be already element of a dot product space. However, we can still
map its space to another more general dot product space. The space H is called feature
space. Now we can define the similarity measure for the dot product in the feature space H
by

K(x, x′) = 〈Φ(x),Φ(x′)〉 . (2.9)

Since Φ can be defined arbitrarily, this mapping gives us a huge spectrum of different similarity
measures. Furthermore the patterns can be handled geometrically which might be more
intuitive than the original domain space.

Aside the so-called linear kernel (2.6), the following three kernels were successfully used in
many real-world applications:
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1. kernels that return polynomials of degree d:

K(x, x′) = (〈x, x′〉+ 1)d. (2.10)

2. kernels generating radial basis functions:

K(x, x′) = K(||x− x′||), (2.11)

for example

K(||x− x′||) = exp
(

−γ ||x− x′||2
)

. (2.12)

3. kernels that generate two-layer neural networks:

K(x, x′) = S(v 〈x, x′〉+ c) (2.13)

where S(·) is an sigmoid function, e.g. tanh(·) or 1
1+exp(·)

.

Note, however, that a symmetric function can only be used as a kernel if Mercer’s condi-
tion [24] hold true. In short, the matrix Kij = K(xi, xj), 1 ≥ i, j ≥ l has to be positive
definite. If this condition is not valid for the chosen kernel, the SVM cannot guarantee a
good generalization to the test data.

Kernel functions play an elementary role for support vector machines. The way how similarity
is defined has a major influence of the classification result of the machine. Basically, kernels
are used to map nonlinear separable data into a higher dimensional space where the data
points become linear separable and thus easy to classify.

Consider hereto the following example of two classes separated by an ellipse as decision
boundary [32]. The scenario is illustrated in Figure 2.1 as well. The learning machine shall
estimate this boundary based on empirical data. By the nonlinear mapping

φ(x) = φ(x1, x2) = (1,
√

2x1,
√

2x2, x
2
1, x

2
2,
√

2x1x2), (2.14)

the ellipse in R
2 becomes a hyperplane in R

6 since an ellipse can be written as linear equation.
Here the kernel can be defined by substituting (2.14) into Equation (2.9). This leads to the
polynomial kernel of degree two

K(x, x′) = 〈φ(x), φ(x′)〉 = (〈x, x′〉+ 1)
2
. (2.15)
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Figure 2.1: Linear separability induced by a kernel [32]. Whilst data in the left plot (a) cannot
be separated by a linear classifier, a nonlinear mapping of the points into a 6-
dimensional space (z1, z2, z3, z4, z5, z6) = (1, x1, x2, x

2
1, x

2
2, x1x2) enables a linear

separability. Note that in the right plot (b) only three dimensions z4, z5, z6 are
plotted.

By applying the kernel as similarity measure between two data points, the direct computation
of the high-dimensional space can be omitted. Thus the support vector machine has to find
a separation between both classes of mapped data. Further insights into SVM are given in
Chapter 3, Section 3.3.

2.1.2 Specifics of Discrimination of Crash Events

The discrimination of crash events into fires and no-fires based on crash signals is a special
classification problem. By definition, every pattern of the training set (2.1) is considered to
be independent from each other. This is a fundamental assumption that guarantees that
we can construct a learning machine based on the unknown joint probability distribution
F (x, y).

This assumption does not hold true in the case of crash events. The consecutive patterns of
a crash do have a temporal coherence and are dependent from each other. A misclassification
of one single no-fire pattern of a crash event will active the restraint system. This might
cause severe injuries to driver and passenger, respectively. Therefore the minimal requirement
of a restraint system is that all no-fires have to be classified correctly. In terms of machine
learning, the costs of misclassification are very high.

On the other hand, there are the fire patterns. In contrast to the no-fires, it is not necessary
to correctly classify all fires of a crash. A fire decision, however, has to be made since a
misclassification of all fire patterns would lead to heavy injuries or fatalities. As a conse-
quence, it is sufficient enough to detect at least one fire pattern correctly. Here, the costs
of misclassification are therefore very low.
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To sum up, the costs of misclassification are highly unbalanced. Moreover, there exists a
temporal dependency for fire and no-fire patterns, respectively. No-fire patterns have to be
recognized correctly by all means. Whereas some patterns of a fire crash do not need to be
classified right provided that at least one pattern will be distinguished.

Another problem may be caused by fire crashes that are recognized at a time after the
requested time to fire. These fire crashes are called late fires since the restraint system
would be deployed later than the RTTF. Late fires can be the cause of severe injuries as
well.

2.2 Definition of a Crash

Before an implementation of a SVM is elucidated in the next section, let us define some
general concepts that are necessary for the thesis. First of all, it is essential to know how the
data structure of a crash could look like.

Suppose there are given K crashes, both fire and no-fire. Every crash is labeled with a class
variable ω ∈ {0, 1}. Say 0 represents a no-fire and 1 a fire crash, respectively. Its crash
data is equivalent with a time series X = (x1, . . . , xl) which consists of l multidimensional
vectors xi ∈ R

n, whereas 1 ≤ i ≤ l. For every crash, there exists a sequence of timestamps
T = (t1, . . . , tl). The point in time ti ∈ R+ denotes the time after the beginning of the
crash event in milliseconds when xi is observed. Thus every ti corresponds to one xi.

In addition, customer requirements for every crash are given. These requirements pertain
the requested time to fire (RTTF) for every stage s ∈ {1, . . . , S}. For instance, a common
five-stage restraint system (S ≡ 5) with all stages and their passive safety devices is shown
in Table 2.1.

Table 2.1: Five-stage restraint system. Depending on the severity of the crash, different
stages will be deployed. The first stage only deploys the belt tensioner, whereas
the other stages deploy a two-stage airbag and differentiate between a belted and
a non-belted passenger, respectively.

stage s passive safety devices in use

1 belt tensioner
2 airbag stage 1 (passenger non-belted)
3 airbag stage 1 (passenger belted)
4 airbag stage 2 (passenger non-belted)
5 airbag stage 2 (passenger belted)

Let us denote the RTTF for a stage s by ts. Hence a sequence of fire times T = (t1, . . . , tS)
belongs to every crash where ts ∈ R+ ∪ {0}, 1 ≤ s ≤ S. A fire time ts = 0 will ensure
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that the stage s shall not deploy. If T = (0, 0, . . . , 0), then this crash is denoted as no-fire
crash3. Summarizing the definitions of above, we can denote a crash with all requirements
as follows.

Definition 2.1 (Definition of a crash) Let the index of a crash be a positive integer k ∈
{1, 2, . . . , K} and let l ∈ N be the length of the crash, respectively. Let T = (t1, . . . , tl) be
the sequence of timestamps ti ∈ R+ and X = (x1, . . . , xl) be the sequence of multivariate
values xi ∈ R

n. Finally, let T = (t1, . . . , tS) be the sequence of requested times to fire
ts ∈ R+∪{0} for every stages 1 ≤ s ≤ S. It follows that a crash C is denoted by a quintuple
(k, T,X , T , ω) where the class label ω is either 1 for a fire or 0 for a no-fire crash.

2.3 Data Driven Optimization Tool

In 2004, Siemens VDO (SV) and Corporate Technology (CT) started cooperating to optimize
sensor configurations in restraint systems. Different sensor setups heavily change the discrim-
ination of fire crashes and no-fire crashes as we already explained in Chapter 1, Section 1.2.
The tool Data Driven Optimization of Sensor Configurations (DDO) that was developed
by this joint venture shall answer the following question. Do crash signals generated by a
particular sensor setup provide sufficient information to discriminate fire crashes from no-fire
crashes?

crash
data

training set

selection

training
set

training model testing

classified crashes

determine
conflicts

resultsinter-
pretation

Figure 2.2: Flowchart of the DDO tool.

This discrimination usually cannot be carried out on raw signals coming from the sensors (cf.
Chapter 1, Section 1.2.2) due to the complexity of the problem and the physical ability of
interpretation that has to be ensured. Signals have to be represented as so-called features.
For instances, a very simple feature might be the integration of a signal over the last n
milliseconds. The final set of features for a certain platform might contain much more
complex features that have to be chosen by calibration.

The DDO tool can be applied to several use cases. For example, given several crash measure-
ments from different sensor configurations, DDO can be used to find the best configuration

3Recall that AZT crashes are no-fire crashes.
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with respect to the best separability from fire and no-fire crashes. Figure 2.2 shows the gen-
eral work flow of the DDO tool. In this chapter, only the first three steps of this flowchart
will be discusses. The part of conflict determination is discussed in Chapter 4, Section 4.2.

The following sections will elucidate selected implementation details of the DDO tool as they
are explained more precisely in [26, 18] as well. First of all, the selection of a training set is
discussed in the next section. After that, the learning step with model selection is examined
in Section 2.3.2. Finally, Section 2.3.3 will give insights into a heuristic how to classify an
unseen pattern into a crash class.

2.3.1 Selecting a Training Set

In general, the way how to select a training set (cf. Equation (2.1)) is up to the DDO user.
The selection can be influenced by either changing given parameters or directly implementing
own procedures. The set of global parameters is determined in an INI file, whereas there
exist parameters in the source code as well.

DDO reads the general configurations that are not crash-specific from an INI file. This
INI file contains mandatory and optional parameters, respectively. A selection of the INI
parameters is given in the following. Note that there are many more parameters. However,
the undermentioned selection only includes parameters that influence the training set.

In order to construct a selection of fire patterns for each crash, a so-called fire range is
constructed. This range includes all patterns that are bounded around the RTTF ts for
stage s, say t ∈ {t−s , . . . , ts, . . . , t+s }. The computation of the fire range depends on the two
mandatory parameters t< and t>, respectively4. Both values specify the start and end of the
fire range in percent of the RTTF ts,

∀s ∈ {1, . . . , S} : t−s = max

{

ts

(

1− t<

100

)

, 0

}

, t+s = ts

(

1 +
t>

100

)

. (2.16)

The values t−s and t+s can be furthermore changed by two optional parameters t− and t+,
resp5. By default, these constants are set to zero. On the one hand, the beginning of the fire
range t−s is extended by the additive offset t− ≤ 0. The offset t+ ≥ 0, on the other hand, is
added to the end of the fire range t+s . Thus,

∀s ∈ {1, . . . , S} : t−s ←− t−s + t−, t+s ←− t+s + t+. (2.17)

4It is important to note that t< and t> are independent from the chosen stages. In the INI file, t< is
denoted as tPRE and t> as tCONST, resp.

5The constants t− and t+ are independent from the chosen stages as well. The INI expressions are named
tConstPRE and tConstPOST.

Christian Moewes 25



2 Related Work

Until now, we have only considered the selection of fire patterns. Before a parameter for
no-fire selection is introduced, let us recall that we deal with a very unbalanced classification
problem as an explanation be found in Section 2.1.2. Due to this mismatch, a selection of
no-fires can only be done very carefully.

A fire event usually lasts around 100 to 200 milliseconds since v0 might be 60 km/h or
even more. After 200 ms, every restraint system is far too late from passenger protection
anyway due to the massive vehicle deformation. Therefore a rapid reaction after few dozens
of milliseconds for a fire crash is a necessity in order to protect the driver and passengers.
On the other hand, signals of a no-fire event have to be observed continuously since they
might rapidly change to the characteristics of a fire event. Due to that reason, the length of
a no-fire crash is much longer than a fire crash.

Unfortunately, signals of a no-fire are even recorded long time after the main events already
happened. Hence all sensor features will record a constant signal. After a certain point in
time, they do not carry any information. It is quite easy to find this point in time by looking
at the signals of all no-fire crashes.

In order to incorporate this point in time, there exists one parameter in DDO that allows to
cutoff all no-fires after a certain time. This parameter 6 can notable reduce the computation
time. Nevertheless, it should be clear that a too small cutoff may remove important data. It
is clear that one has to be careful with the application of this parameter.

In the procedure which creates the training set, there is another constants that has an
influence on the selected fire patterns. It cannot be specified in the configuration file. It is
necessary to understand how the fires are selected in order to see the constant’s influence.
This will be explained by the following elucidations.

A priori, only a maximum number of fire patterns lmax of every crash can join the training
set. This constant7 is heuristically set to lmax = 20. In fact, the lmax “best ranked” patterns
of every crash are added to the training set. The ranking is based on a linear SV classification
of every single fire pattern against a subset of all no-fires.

Such a procedure where only a limited amount of patterns are added to the training set is
referred to active learning [11]. The ranking criteria, so-called stress, is basically proportional
to the no-fires that are misclassified due to the single fire pattern. The lower the stress of a
fire, the higher it will be ranked. Thus the first lmax ranked fires are added to the training
set.

Finally, the training set consists of all no-fires and the best lmax patterns of every fire crash.
The next section will elucidate the way how model selection in DDO is carried out.

6The cutoff parameter in DDO is named cutoffnofire. By default, this parameter is deactivated.
7In the MATLAB implementation of DDO, this constant is called MAX NUM SELECT.
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2.3.2 Performing Model Selection

Model selection is an important procedure in machine learning. Out of a collection of possible
models that shall describe the data, the most suitable one should be selected. This demand
depends on the problem that has to be solved. In our case of discrimination of crash events,
we will prefer a model that will minimize the following two criteria:

1. the number of misclassified (critical) crashes nCC

2. the number of critical errors nCE.

The number of critical errors nCE will sum up every misclassified no-fire and all l fire pattern
of each fire crash if it is complete misclassified. This again, expresses the unbalance of our
problem (cf. Section 2.1.2).

Since the DDO tool will apply a C-SVM (see Chapter 3, Section 3.2.1) based on the Gaussian
kernel (2.12), there exist two SVM parameters that have to be specified. First of all, the
C > 0 that enables complexer decision functions. Second, the γ value of the Gaussian kernel
function which is indirect proportional to the width of the Gaussian. As a consequence,
smaller C and γ values are preferred since they usually refer to an easy classify.

The exploration of these two SVM parameters is done by so-called grid search. The grid
is defined on tuples (C, γ) ∈ {1, . . . , 5} × {0.1, 0.2, . . . , 0.9}. For every tuple, a SVM is
learned on the training set. The resulting model is evaluated on a subsample of the final test
set in terms of nCC and nCE, respectively.

Whereas the real test set is used to compute the test error after the model is obtained, a
subsample of this test set is used in the model selection step. By doing so, the estimate of
the unknown error is too optimistic. Hence a poor model in model selection may perform
very well in the test step. However, such a model is rejected by the model selection. This
procedure is basically done due to runtime performance. For alternative model selection
methods, it is recommended to read [20] as a starting point.

If the current SV model of the grid has recognized all crashes correctly, then the grid search
will stop. Otherwise the model is compared to the so far best model with respect to our
evaluation criteria.

2.3.3 Prediction of the Crash Class

After model selection has returned a model, it has to be evaluated on the test set. Here,
the question is if a test pattern is classified as a fire or no-fire. Aside of that, it might be

Christian Moewes 27



2 Related Work

an advantage to know to which crash the pattern belongs. This comes especially into play
when a pattern is misclassified. This is the key idea of conflict analysis.

Classifying a pattern into different crashes generally demands a multi-class approach instead
of a binary method. A common implementation of a multi-class SVM is the one-against-one
approach. There, k(k− 1)/2 binary classifier are trained to separate each potential pair of k
type of crashes. We usually deal with k ≈ 50 crashes which make this approach unattractive
since 1225 binary classifiers would be created.

The DDO tool therefore establishes another approach. Every standard SV model consists
of a subset of the training set. These patterns, so-called support vectors, are labeled with
a weight. These weighted points create the decision boundary8. Beside the weight, every
pattern additionally stores the originally type of crash where it belongs to.

Whenever a new pattern is presented to the SVM, this model decides if it is a no-fire or fire
pattern. To determine the pattern’s type of crash, its distances to all support vectors that
belong to its class are computed. The smallest distance will answer the crash type which
is identical to the one of the closest support vector. This approach is motivated since the
SVM is based on the Gaussian kernel (2.12) that defines the Euclidean distance between
patterns.

It is important to note that the prediction of the crash class does only work with a RBF-
kernel (2.11) due to the explanation above. This restricts the variety of possible approaches
extremely. Moreover, the performance of this heuristic is questionable since the Gaussian
kernel is not suitable for every problem. It is more or less a first approach to an unknown
problem. Euclidean distance based similarity measures are naturally motivated if there does
not exist any a priori information. A specialized kernel for our problem can include information
that facilitates a discrimination between fires and no-fires. The restriction concerning the
Gaussian kernel is the reason why a multi-class approach as it was just sketched becomes
more attractive.

As it was already shown, assumptions for standard pattern recognition do not hold in our
case. Therefore another approach is presented in the next section that is not based on
individual patterns. The following ideas try to exploit the information of time.

2.4 Time Series Analysis

Generally, a classification problem starts with the assumption that all patterns are indepen-
dently and identically distributed (i.i.d.) and thus there exists no coherence between any of
them. However, as we already expressed, the patterns coming from crash tests are related

8Further explanations about support vectors will be given in the next chapter.
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to each other by the information of time.

Therefore the assumption that every pattern is drawn i.i.d. does not hold. As a consequence,
an approach that considers the temporal coherence of the patterns might lead to better
results. Instead of regarding (2.1) as sample for training, we will take sequences in time
(so-called time series) as patterns. A complete crash is such a sequence of points in time.

Since we have to have a reliable prediction as early as possible, it is necessary to split every
crash into smaller time series that are labeled in the same way. This technique is shortly
elucidated in the next section.

Another problem with time series analysis concerning support vector machines is the kernel
function that measures the similarity of two patterns. As it was shown in Section 2.1.1, a
kernel function takes only two multidimensional vectors as input rather than two matrices.

Either the function Φ that maps every time series into a multidimensional vector is chosen
in an appropriate way or more complex kernels have to be used. One idea of the former
approach will be discussed in the next chapter. Solutions with complexer kernels are presented
in Section 2.4.2.

2.4.1 Sliding Window Technique

On the one hand, the incorporation of temporal knowledge will give further information to
discriminate fire from no-fire events. Thus instead of classify only one pattern, we will look
at w patterns successive in time. On the other hand, we have to ensure that the time when
our machine makes a prediction does not exceed any RTTF. Hence it is clear that we have to
find a good compromise between w ≡ 1 (possibly earliest prediction) and w ≈ crash length
(large temporal coherence).

Suppose that the time ∆t between two patterns of a crash event is constant (e.g. 1ms) and
that we have set an appropriate w which we will call window length. Due to this assumptions,
the first w patterns represent the first small time series. The choice of the next w patterns
as sequence depends on another parameter that has to be fixed.

This second parameter, say ∆w which is usually called window lag defines the time between
the beginning of one sequence and its successor. With fixed window length and lag, one can
easily break down a whole crash into small time sequences. It is clear that a window lag of
1 will shift the starting point of the window to the next time stamp. In contrast, ∆w ≥ w
will lead to non-overlapping sequences in time. Usually one sets 1 ≤ ∆w ≤ w to ensure that
the sliding windows overlap each other.

This transition of a window to the next w patterns is also referred to the sliding window
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technique. For every crash C = (k, T,X , T , ω) with k ∈ {1, 2, . . . , K}, we construct matri-
ces

Xk1 = (xk,1 xk,2 . . . xk,w)

Xk2 = (xk,1+∆w xk,2+∆w . . . xk,w+∆w)

Xk3 = (xk,1+2∆w xk,2+2∆w . . . xk,w+2∆w)

...

Xkm = (xk,1+(m−1)∆w xk,2+(m−1)∆w . . . xk,w+(m−1)∆w)

(2.19)

Every Xki has the class label ω of the k-th crash C. The information of time, e.g. when
a fire decision can be made, is encoded into the last row w of each matrix Xki. Since a
fire decision is possible directly after recognizing a window, the TTF is thus equivalent to
the last window’s point of time. As a consequence, our new training set consists of triples
(tk,w+(i−1)∆w, Xki, ωk).

Since we want to apply support vector machines to discriminate fire crashes from no-fires,
we cannot use standard kernels to compare matrices. The next section will present some
techniques that are suitable for similarity measures between time series.

2.4.2 Kernels for Time Series Analysis

As already introduced in Section 2.1.1, every support vector machine is based on a kernel
function in order to measure similarity between patterns. All kernels so far suffer from the
same disadvantage. They are only defined for multivariate patterns x ∈ R

n. When we deal
with time series, however, our patterns are no longer multivariate vectors anymore. We rather
have the problem of measuring similarity of sequences with different lengths9.

Every pattern will be a sequence matrix, the rows of which are the original multivariate
values. With the objective of computing the similarity of arbitrarily long sequences rather
than vectors of fixed dimensionality, a kernel function for the SVM has to handle this problem
also. The following subsections will present different kernels that are able to measure the
similarity of sequences of different lengths.

9Note, however, that we do not consider different lengths of sequences since we fixed the window size w.
Nevertheless all presented ideas can handle sequences of different lengths as well.
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Outer Product of Trajectory Matrix

The possibly simplest approach to handle sequences of multivariate values is pursued by [7].
Here, every sequence (or trajectory matrix) X = (x1, . . . , xw) with xi ∈ R

n is multiplied by
its transpose,

Z = XXT . (2.20)

Therefore this outer product matrix Z no longer depends on the length of the sequence. All
diverse matrix elements [Z]ij = zij, i = 1, 2, . . . , d, j = i, i + 1, . . . , d will be transformed
into a (w(w + 1)/2)-dimensional vector (z1,1, z1,2, . . . , zw−1,w, zw,w). In other terms, the
elements of the upper right triangular matrix of Z will build the input for the pattern vectors.
These newly created vectors can easily be handled by a standard SVM with the kernels
presented in Section 2.1.1.

It was tested with a SVM to classify segments of acoustic speech that durations are varying.
The performance of the SVM was compared to an HMM that altogether could not be beaten
by the outer product approach. Therefore this method shall only be listed here in order to
show a possible way of modeling sequences.

Gaussian Dynamic Time Warping

A standard approach to measure the distance between time series is the technique of dynamic
time warping (DTW) [25]. Whereas the computation of the Euclidean distance between two
signals cannot handle a distortion in time, DTW allows nonlinear alignments between two
time series to fit similar sequences. However, the sequences can even be locally out of phase
when DTW is applied. It was introduced to the speech processing community and is now
widely used in many fields of time series analysis. Before we introduce a kernel based on
DTW, the formal problem of DTW is described.

Suppose we are given two time series, say X = (x1, . . . , xl) of length l and X ′ = (x′1, . . . , x
′
l′)

of length l′, respectively. In order to align X and X ′ by DTW, an l-by-l′ matrix D is
constructed such that the element [D]ij corresponds to the Euclidean distance d(xi, x

′
j) =

∑n

d=1

(

[xi]d − [x′j]d
)2

.

By applying DTW, one tries to find a so-called warping path

W = (w1, . . . , wL) (2.21)

that leads across the matrix D whereas
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wk ∈ {1, . . . , l} × {1, . . . , l′} , max(l, l′) ≤ L ≤ l + l′ + 1. (2.22)

Thus DTW defines a mapping between X and X ′ to align the elements of the time series.
The optimal path is the one which minimizes the costs wk. Usually, dynamic programming
is used to find an approximation to the optimal path that is defined by

DTW(X1, X2) = min
L
∑

k=1

[D]wk
. (2.23)

The application to SVM is straightforward [9] as only the Euclidean distance ||·|| of ker-
nels generating radial basis functions (2.11) has to be substituted by the DTW distance
DTW(X,X ′). The Gaussian kernel (2.12) is adopted to the DTW distance as follows

KDTW(X,X ′) = exp(−γDTW2(X,X ′)). (2.24)

This kernel function is called Gaussian dynamic time warping (GDTW) kernel. The major
drawbacks of this special similarity measure is the cost of the DTW computation and a
theoretical reason that is severe. Mercer’s condition [24] is not guaranteed for this type
of kernel. The DTW distance leads to an inadmissible kernel. In practice however, it still
showed good results, especially in the domain of handwriting recognition.

Dynamic Time Alignment Kernel

Another kernel that is based on DTW like the last one was introduced by [34]. However,
this similarity measure is slightly different. Whereas the GDTW kernel is based on kernels
generating radial basis functions (2.11), here the sum of an arbitrary kernel that is evaluated
on every component of the warping path W = (w1, . . . , wL) will determine the similarity of
two sequences X and X ′, respectively.

Since the two sequences are dynamically aligned in time, the kernel is called dynamic time
alignment kernel (DTAK) and can be written as

KDTAK(X,X
′) =

1

M

L
∑

k=1

K(xϕ(k), x
′
ϑ(k)) (2.25)

whereas wk = (ϕ(k), ϑ(k)) is the k-th element of the warping path and M is a normalizing
factor.
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The main advantage over the GDTW kernel that only permits RBF kernels is the fact that K
can be any kernel. Nevertheless the DTAK does not represent kernel that satisfies Mercer’s
condition [24] either. The high expenses for the computation of the warping path are identical
to the GDTW kernel. It was basically applied to phoneme recognition with a small amount
of data.

2.4.3 Fisher Scores

The following idea is founded on an hybrid approach [19]. First, a parametrized probability
model P (X|θ) that tries to generate given data is learned. Second, its parameters θ transform
the patterns into a multidimensional feature vector, so-called Fisher scores, which is the input
for a SVM that tries to discriminate theses feature vectors.

Hidden Markov models (HMM) [27] or Gaussian mixture models (GMM) are the probably best
known examples of such generative models. The latter type of model is shortly introduced
in the next subsection before the computation of the Fisher scores is clarified.

Gaussian Mixture Model

Mixture distributions provide a powerful, parametric framework for statistical modeling and
analysis [23]. A mixture of distributions is a combination

∑m

i=1 pifi(x) of other distributions
fi. In our case, we consider parametric fi with unknown parameter θi. Thus a parametric
model of mixtures is denoted by

m
∑

i=1

pif(x|θi). (2.26)

We further assume that every fi is a normal distribution (Gaussian) with θi that corresponds
to its unknown mean and covariance. Now suppose that we are given l observations X =
(x1, . . . , xl) generated by sampling a the normal distributions fi. The probability density is a
mixture of Gaussian distributions which consist of a set of prior probabilities p = (p1, . . . , pm)
and a set of parameters θ = (θ1, . . . , θm).

Since the parameters are unknown, we have to chose a set of parameter values that makes
the sample most likely. This is also known as maximum likelihood estimation. Formally, we
have to chose θ that maximizes the likelihood function
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L(p, θ|X) =
n
∏

i=1

m
∑

j=1

pjf(xj|θj). (2.27)

or the log-likelihood

lnL(p, θ|X) =
n
∑

i=1

ln

(

m
∑

j=1

pjf(xj|θj)

)

. (2.28)

Maximizing the expected value of L or lnL can be performed by the expectation maximization
(EM) algorithm [15]. Unfortunately, the EM algorithm only converges to a local maximum
of the likelihood and it reacts very sensitive to noise.

Having locally optimal parameters θ to a certain degree of approximation, the Gaussian
mixture model is trained and able to serve our purpose of computing the Fisher scores.

Computation of the Scores

In order to capture the generative process in a metric between examples, [19] suggest to use
the gradient space of the generate model P (X|θ). The gradient of the log-likelihood with
respect to the parameter θ establishes sufficient statistics for the sample X.

Formally, the class of probability models P (X|θ) defines a metric given by the Fisher infor-
mation matrix

I = EP (Uθ(X)Uθ(X)T ) (2.29)

where the Fisher score is given by

Uθ(X) = ∇θ logP (X|θ). (2.30)

Fisher Kernel

By mapping every pattern of X onto its Fisher score by the probability model P (X|θ) we
can define the so-called natural kernel (Fisher kernel)
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K(X,X ′) = Uθ(X)T I−1Uθ(X). (2.31)

In contrast to the GDTW kernel and the DTAK, it is shown in [19] that the Fisher kernel is
a valid kernel function. It was successfully applied to audio classification and the detection
of protein homology in the field of bioinformatics.

Since probability models can easily handle sequences, the Fisher kernel based on the Fisher
scores constitutes a natural way how to discriminate fire and no-fire time series by a support
vector machine.

2.5 Summary

In this chapter, we introduced ideas how the problem to discriminate fire crashes from no-fires
can be modeled and which specifics this problem brings up. First, we formally explained the
theoretical concept of learning from examples in Section 2.1. There, we also brought out a
way of measuring the similarity of these examples in terms of evaluating a kernel function.
This will be the basis for the support vector machines as they will be introduced in the
next chapter. Moreover, the particulars of the discrimination between fires and no-fires were
shown.

A formal definition of a crash was given in Section 2.2. This definition determines the type
of data structure that is necessary in order to solve both the problem of discrimination and
conflict analysis.

In Section 2.3 the DDO tool was briefly explained. It is the basis of all improvements and
implementations that will form the remainder of this thesis. Originally, DDO is based on a
support vector classification that does not consider time series.

Section 2.4 addresses the idea of time series analysis. First of all, the sliding window technique
for constructing short sequences in time is explained. After that a group of kernel functions
that would be suitable for time series was concisely presented. Unfortunately, either a method
was too simple or it is not guaranteed that the learning machine will generalize well on unseen
data. Moreover, by applying DTW or the two kernels that are based on that, the differences
between fires and no-fires get lost. Very often a fire crash only reaches a certain signal
strength somewhat earlier than a no-fire crash. Thus DTW kernels most probably will not
perform well here.

Last not least the Fisher kernel was introduced since it is a natural way to combine the
generative power of a parametrized probability model with the discriminative power of a
support vector machine. It can easily handle sequences of multivariate values and represents
an admissible kernel as well.
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The present chapter is dedicated to techniques and procedures that are applied in the context
of this thesis. The majority of the equations and the trains of thought are adopted from
Vapnik [36].

Whereas the general concept of learning from examples was introduced in the last chapter,
the problem of pattern recognition is specified from the general problem in Section 3.1. Two
universal principles for solving this problem are presented.

Section 3.2 defines an important type of learning machines, the linear separating hyperplanes,
that solve the problem of pattern recognition. Moreover, a special class of hyperplanes are
specified in Section 3.2.1 that are more robust against outliers and noise, respectively. These
soft margin hyperplanes that do not have to classify every pattern perfectly are very suitable
for our problem since the sample of fire patterns does not have to be completely recognized.

The concept of support vector machines will be elaborated in Section 3.3 which concludes
this chapter. A support vector machine (SVM) enables the mapping of all patterns from the
input space into a higher dimensional feature space where the optimal soft margin hyperplane
is obtained by solving a convex optimization problem.

3.1 Pattern Recognition

Let us introduce the general problem of pattern recognition as it might be found in [36]
before we examine our scenario of crash tests. Formally, one can state that our environment
where the crash tests are performed is characterized by a probability distribution function
F (x). Outcome x appears randomly and independently. Each outcome is classified into
one of ω classes using the conditional probability distribution function F (ω|x), whereas
ω ∈ {0, 1, . . . , k − 1}.

Both information about the environment F (x) and the decision rule F (ω|x) are unknown
but fixed. Since both functions exist, we can conclude that the joint probability function
F (x, ω) = F (ω|x)F (x) does also exist. By definition, every outcome (x, ω) of the function
F (x, ω) is independently and identically distributed (i.i.d.) as well as every pattern x itself.
Therefore their appearance is not related to each other.
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Consider a set of decision rules {φ(x, α) | α ∈ Λ} which only take k values {0, 1, . . . , k−1}.
Moreover, we take the simplest loss function

L(ω, φ) =

{

0 if ω = φ

1 if ω 6= φ
(3.1)

which is also referred to indicator function. By minimizing the risk functional

R(α) =

∫

L(ω, φ(x, α)) dF (ω, x) (3.2)

on the set of decision rules {φ(x, α) | α ∈ Λ}, the problem of pattern recognition can be
solved. However, the distribution function F (ω, x) is unknown and we are only given the
i.i.d. sample

(ω1, x1), . . . , (ωl, xl). (3.3)

The probability of a classification error for a given decision rule φ(x, α) is computed by the
risk functional (3.2) defined on the loss (3.1).

Let us recall the scenario of learning from examples as it was introduced in Chapter 2,
Section 2.1. There, the vector z coincides with the (n + 1)-dimensional vector (ω, x).
Furthermore the set of functions {Q(z, α) | α ∈ Λ} is changed accordingly to Equation (3.1)
to {Q(z, α) = L(ω, φ(x, α)) | α ∈ Λ}. With these assumptions, we can reduce our problem
to the problem of minimizing the risk functional.

The risk functional (3.2) cannot be minimized directly as the probability function F (x) is
unknown. In order to get an estimate of the risk, one considers two induction principles
which will be explained in the next two sections.

3.1.1 Principle of Empirical Risk Minimization

Instead of minimizing the risk functional (2.3), one minimizes the functional

Remp =
1

l

l
∑

i=1

Q(zi, α), α ∈ Λ (3.4)
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which is named the empirical risk functional and evaluated on training data (2.1) that are
drawn from the distribution function F (z). The principle of minimizing the risk functional is
referred to the empirical risk minimization (ERM) principle.

When we face the problem of pattern recognition as shown in the last section, then we want
to minimize the empirical risk functional

Remp(α) =
1

l

l
∑

i=1

L(ω1, φ(xi, α)), α ∈ Λ. (3.5)

By minimizing (3.5) with L(x, φ) as defined in Equation (3.1), one would have the least
errors on the training data (3.3). Thus the function Q(z, α) = L(ω, φ(xi, α)) has to be
chosen by the ERM principle. It can be chosen by another principle as well, e.g. the principle
that will be introduced in the next section.

3.1.2 Principle of Structural Risk Minimization

The principle of structural risk minimization (SRM) [35] aims to have a trade-off between the
complexity of the chosen function Q(z, α) and the result of empirical risk (3.4). Usually, the
chosen functions by SRM differs from the one that would be selected by the ERM principle.

We would like to control the minimization of the risk functional (3.2). If the sample size
l→∞, then we can use the ERM principle that minimizes the empirical risk (3.4). However,
if the sample size is small, a small empirical risk on the training data (2.1) does not guarantee
a small risk on unseen data.

In this case, we have to introduce another concept that enables us to control the minimiza-
tion of the empirical risk. This concept is called Vapnik-Chervonenkis (VC) dimension that
characterizes the capacity of a set of functions. It can be defined as follows.

Definition 3.1 (VC dimension(e.g., [36])) The VC dimension of a set of indicator func-
tions {Q(z, α) | α ∈ Λ} is equal to the largest number h of vectors z1, . . . , zl that can be
separated into two different classes in all the 2h possible ways using this set of functions1.

With the concept of VC dimension, the following additive inequality holds true for all functions
0 ≤ Q(z, α) ≤ 1, α ∈ Λ with probability at least 1− η and a finite VC dimension h

1The VC dimension is the maximum number of vectors that can be shattered by the set of functions.
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R(α) ≤ Remp(α) +
BE(l)

2

(

1 +

√

1 +
4Remp(α)

BE(l)

)

(3.6)

where

E(l) = 4
h
(

ln 2l
h

+ 1
)

− ln η/4

l
(3.7)

and the constant η ∈ (0, 1] converges to zero with increasing sample size l. When we deal
with pattern recognition, the upper bound B of the indicator functions Q(z, α) equals to
1 which simplifies inequality (3.6). Furthermore, note that a sample of size l → ∞ would
result in R(α) ≈ Remp.

Whereas the first term in (3.6) only depends on one chosen function of the set of functions,
the second term basically depends on the VC dimension of the complete set of functions.
Now, by minimizing both the left and the right term on the right-hand side of Equation (3.6),
the VC dimension h becomes a controlling variable.

The principle of SRM can be introduced as follows. Let S be a structure on the set S of
functions {Q(z, α) | α ∈ Λ} with a structure S. Moreover let

S1 ⊂ S2 ⊂ . . . ⊂ Sn ⊂ . . . (3.8)

be the set of nested subsets of functions where Sk = {Q(z, α) | α ∈ Λk} and S∗ =
⋃

k Sk.
Then the sequences of values of VC dimensions hk and of the bounds Bk, respectively for
Sk ∈ S is nondecreasing with increasing k:

h1 ≤ h2 ≤ . . . ≤ hn ≤ . . .

B1 ≤ B2 ≤ . . . ≤ Bn ≤ . . .
(3.10)

Thus the principle of SRM chooses the Sk ∈ S for which the smallest bound on the risk
functional is attained. Figure 3.1 shows an example of the dependencies between the VC
dimension h and the risk functional that has to be minimized. To conclude the argumenta-
tions we emphasize that this principle guarantees the best solution of the learning problem
for a given set of training data.
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S1 S∗
Sn

empirical risk

confidence interval

bound on the risk

h1 h∗ hn h

Figure 3.1: Principle of structural risk minimization [36]. The bound on the risk functional
equals the sum of the empirical risk and of the confidence interval. There exists
an indirect dependency between VC dimension and empirical risk, whereas the
confidence interval directly depends on h. Note that the minimum of the risk is
obtained by minimizing both empirical risk and the confidence interval.

3.2 Separating Hyperplanes

Separating hyperplanes as learning machines came up with Rosenblatt’s perceptron algo-
rithm [28]. They offer solutions to the statistical problems that we considered in the begin-
ning of Chapter 2. Generalizations of this simple machine (artificial neural networks, e.g.)
are standard machine learning methods today.

Support vector machines are based on separating hyperplanes as well. In this section, we
will first introduce the concept of a linear separating hyperplane. After that soft margin
hyperplanes for a nonlinear separable set of patterns is presented. So let us start with the
linear case and the definition of a hyperplane.

Two finite subsets from the training data2

(y1, x1), . . . , (yl, xl), x ∈ R
n, y ∈ {±1}, (3.11)

first subset X1 for which y = 1 and second one X2 for which y = −1, are called separable [36]
by the hyperplane 〈x, φ〉 = c if there exist both a unit vector φ and a constant c such that

2We will use indicator functions of the form sgn(x) ∈ {±1} rather than θ(x) ∈ {0, 1}.
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the inequalities

〈xi, φ〉 > c, if xi ∈ X1,

〈xj, φ〉 < c, if xj ∈ X2

hold true. Since the number of possible hyperplanes is infinite and we are looking for the
“best” one, the concept of the optimal hyperplane [36] has to be introduced.

Denote for any unit vector φ the values

c1(φ) = min
xi∈X1

〈xi, φ〉 ,

c2(φ) = max
xj∈X2

〈xj, φ〉 .

Assume that the unit vector φ0 maximizes the so-called margin

ρ(φ) =
c1(φ)− c2(φ)

2
, ||φ|| = 1 (3.12)

when the inequalities (3.2) are fulfilled. Thus the vector φ0 and the arithmetic mean of c1
and c2 ascertain the so-called optimal hyperplane. It separates both classes of vectors x
correctly and maximizes the margin (3.12). In addition, it can be shown very easily that the
optimal hyperplane is unique. Figure 3.2 shows an example of an optimal hyperplane given
two linearly separable classes.

Intuitively, a separating hyperplane with a large margin will perform well on the test data.
Since test and training data are randomly drawn from the same underlying distribution, the
biggest fraction of the test set will be situated close to the training patterns. If we consider
a form of input noise ∆x ∈ R

n “around” a new pattern x that is bounded in its norm by
some r > 0, then a classification of all training points with a margin ρ > r implies a totally
correct classification of every test pattern.

So we are looking for a pair that consists of ψ0 and a constant b0 such that the inequalities

〈xi, ψ0〉+ b0 ≥ +1 if yi = +1,

〈xj, ψ0〉+ b0 ≤ −1 if yj = −1
(3.14)

do hold true and the vector ψ0 has to have the smallest vector norm
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yi = −1

yi = +1

φ0

bc

bc

bc

bc

r

r

r

r

Figure 3.2: The optimal separating hyperplane is unique and separates the data points with
the maximal margin [32].

||ψ0||2 = 〈ψ0, ψ0〉 . (3.15)

It can be shown [36] that the optimal hyperplane characterized by ψ0 coincides with

φ0 =
ψ0

||ψ0||
. (3.16)

The margin between the optimal hyperplane and the separated training data equals

ρ(φ0) =
1

||ψ0||
. (3.17)

Therefore we finally arrived at the following quadratic optimization problem: minimize the
quadratic function (3.15) subject to the linear constraints

yi(〈xi, ψ0〉+ b0) ≥ 1, i = 1, . . . , l. (3.18)

Instead of solving this problem in the primal space of φ and b, one usually considers the dual
space where the problem is more convenient to solve as Lagrangian

L(ψ, b, α) =
1

2
〈ψ, ψ〉 −

l
∑

i=1

αi (yi(〈xi, ψ〉+ b)− 1) , (3.19)
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whereas α = (α1, . . . , αl) is the vector of Lagrange multipliers αi ≥ 0. The Lagrangian L
has to be maximized with respect to α and minimized with respect to ψ and b. Therefore,
the derivatives of L with respect to the primal variables ψ and b must disappear,

∂L(ψ, b, α)

∂ψ
= ψ −

l
∑

i=1

yiαixi
!
= 0,

∂L(ψ, b, α)

∂b
=

l
∑

i=1

yiαi
!
= 0,

which results in the equalities

ψ =
l
∑

i=1

yiαixi, (3.20)

l
∑

i=1

yiαi = 0. (3.21)

These two equations clarify that the solution does have an expansion in terms of the training
set. Fortunately, only the non-zero Lagrangian multipliers correspond to constraint

αi (yi (〈xi, ψ〉+ b)− 1) = 0. (3.22)

Their patterns xi are called Support Vectors. Equation (3.22) implies that they lie directly
on the margin. It is for this reason that we call a resulting algorithm support vector machine
(SVM). Note that the remaining fraction of training examples is not relevant for the solution
since their multipliers meet αi = 0. Equation (3.22) is also referred to Karush-Kuhn-Tucker
(KKT) conditions.

Finally, we can reformulate the primal into the so-called dual optimization problem by sub-
stituting (3.21) and (3.20) into the Lagrangian (3.19), we get the dual

W (α) =
l
∑

i=1

αi −
1

2

l
∑

i=1

l
∑

j=1

yiyjαiαj 〈xi, xj〉 . (3.23)
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subject to ai ≥ 0, i = 1, . . . , l and Equation (3.21). Denote the optimal solution with ψ0, b0
and α0

i , respectively. Then we can expand the optimal hyperplane with the nonzero weights
on support vectors by

ψ0 =
l
∑

i=1

yiα
0
ixi. (3.24)

and the optimal hyperplane has the form

f(x, α0) =
l
∑

i=1

yiα
0
i 〈xi, x〉+ b0. (3.25)

Vapnik [36] notes that since neither the separating hyperplane (3.25) nor the objective func-
tion (3.23) depend on the dimensionality of the vector but on the scalar product of two
vectors, enables to separate the sample in higher-dimensional (even infinite-dimensional)
Hilbert spaces.

3.2.1 Soft Margin Hyperplanes

Given a real-world data set, it might not be possible to find a separating hyperplane. Even if
a solution can be found, it might not be the optimal one for these specific data. One single
outlier that is labeled incorrectly can have heavy impacts on the hyperplane. Hence a much
more tolerant concept is required to handle noisy data up to a certain fraction.

Cortes and Vapnik [14] developed a new type of hyperplane that allows certain samples
to violate (3.18). A hyperplane 〈ψ, x〉 − b = 0, ||ψ|| = 1 is called ∆-margin separating
hyperplane if it classifies vectors x by

y =

{

+1 if 〈ψ, x〉 − b ≥ ∆

−1 if 〈ψ, x〉 − b ≤ ∆

The following theorem gives an upper bound of the VC dimension of a ∆-margin separating
hyperplane in R

n.

Theorem 1 (e.g.,[36]) Let vectors x ∈ X belong to a sphere of radius R. Then the set of
∆-margin separating hyperplanes has the VC dimension h bounded by the inequality

h ≤ min

([

R2

∆2

]

, n

)

+ 1.
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This theorem is the starting point to develop the SRM principle in order to obtain a feasible
result for a ∆-margin hyperplane that will perform well in terms of generalization. Therefore
the so-called slack variables ξi ≥ 0 are introduced by

F (ξ) =
l
∑

i=1

ξi (3.26)

which is defined in order not to obtain a trivial solution where all slack variables reached
huge values. Thus we have to minimize the functional F (ξ) subject to the constraints

yi (〈xi, ψ〉 − b) ≥ 1− ξi, i = 1, . . . , l. (3.27)

and the constraint

〈ψ, ψ〉 ≥ 1

∆2
. (3.28)

We now could make every ξi big enough to meet the constraint on (yi, xi). It follows that
the solution is given by the reformulated Lagrangian

L(ψ, b, α, β, γ) =
l
∑

i=1

ξi −
1

2
γ(A2 − 〈ψ, ψ〉)

−
l
∑

i=1

αi (yi(〈ψ, xi〉+ b)− 1 + ξi)−
l
∑

i=1

βiξi

(3.30)

where ψ, b, ξi have to be minimized and αi, βi, γ have to be maximized. Considering the
usual extremal conditions with respect to ψ, b and ξi, we obtain the equalities

ψ =
1

γ

l
∑

i=1

αiyixi,

l
∑

i=1

αiyi = 0, αi + βi = 1, (3.31)

which can be substituted into (3.30). This leads to the functional

W (α, γ) =
l
∑

i=1

αi −
1

2γ

l
∑

i=1

l
∑

j=1

αiαjyiyj 〈xi, xj〉 −
γA2

2
, (3.32)
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that has to be maximized with respect to the constraints

l
∑

i=1

yiαi = 0, 0 ≤ αi ≤ 1, γ ≥ 0. (3.33)

The γ in (3.32) can be substituted by

γ =

√

∑l

i=1

∑l

j=1 αiαjyiyj 〈xi, xj〉
A

(3.34)

which leads to optimizing

W (α) =
l
∑

i=1

αi − A

√

√

√

√

l
∑

i=1

l
∑

j=1

αiαjyiyj 〈xi, xj〉 (3.35)

subject to

l
∑

i=1

yiαi = 0, 0 ≤ αi ≤ 1, i = 1, . . . , l. (3.36)

After optimization of W (α), the vector of parameters α = (α0
1, . . . , α

0
l ) forms the generalized

optimal hyperplane

f(x) =
A

√

∑l

i=1

∑l

j=1 α
0
iα

0
jyiyj 〈xi, xj〉

l
∑

i=1

α0
i yi 〈x, xi〉+ b (3.37)

whereas b can be obtained by the KKT condition

0 = α0
k





A
√

∑l

i=1

∑l

j=1 α
0
iα

0
jyiyj 〈xi, xj〉

l
∑

i=1

α0
i yi 〈xk, xi〉+ b



 , k = 1, . . . , l. (3.38)
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By introducing a constant C that equals the optimal value γ0 for maximizing (3.32), the
whole concept of soft margin hyperplanes can be simplified. Thus the generalized optimal
hyperplane is determined by ψ that minimizes the functional

Φ(ψ, ξ) =
1

2
〈ψ, ψ〉+ C

(

l
∑

i=1

ξi

)

(3.39)

subject to (3.26). By applying the same techniques as above, this leads to the regularizing
term

W (α) =
l
∑

i=1

αi −
1

2

l
∑

i=1

l
∑

j=1

yiyjαiαj 〈xi, xj〉 (3.40)

with respect to similar constraints to (3.36)

l
∑

i=1

yiαi = 0, 0 ≤ αi ≤ C, i = 1, . . . , l. (3.41)

3.3 Support Vector Machine

The idea of a support vector machine (SVM) [14, 36] is based on the principle of structural
risk minimization (cf. Section 3.1.2). Basically, a support vector machine tries to learn
a linear decision rule (3.2). By finding the hyperplane that maximizes the margin (3.12),
however, a SVM chooses the function out of a set of functions for which the smallest error
probability is guaranteed.

By mapping the input vectors x into a higher-dimensional feature space H, a nonlinear
decision rule can be learned [10]. Then the optimal separating hyperplane is found in the
new space. The feature space, however, does not need to be considered explicitly. Moreover,
only the inner products between the support vectors xi of which αi 6= 0 and the input vectors
has to be calculated in order to learn nonlinear decision rules.

Suppose that we map the vector x ∈ R
n into a Hilbert space H with coordinates

z1(x), . . . , zk(x), . . .. Then the inner product in a Hilbert space has an equivalent form,

〈z1, z2〉 =
∞
∑

r=1

arzr(x1)zr(x2)⇐⇒ K(x1, x2), ar ≥ 0, (3.42)
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where K(x1, x2) is a symmetric function that satisfies Mercer’s condition [24]. Hence for any
valid kernel K(u, v) satisfying this condition, there exists a feature space z1(u), . . . , zk(u), . . .
where this function generates the inner product. This leads to the decision function in the
input space

f(x, α) = sgn





l
∑

i=1,α0

i 6=0

yiα
0
iK(x, xi) + b



 (3.43)

and the decision function in the feature space z1(x), . . . , zk(x), . . . , . . .

f(x, α) = sgn





l
∑

i=1,α0

i 6=0

yiα
0
i

∞
∑

r=1

zr(xi)zr(x) + b



 , (3.44)

whereas (3.43) can be obtained by constructing a linear separating hyperplane of which inner
product is substituted by the kernel function K(x, xi) into (3.35) and (3.40), respectively.

rs rs rs rs
b b b

x1 x2 x3 xn input vector x = (x1, . . . , xn)

b b b

K(x1, x) K(x2, x) K(xN , x) nonlinear transformation
based on support vectors
x1, . . . , xN

y1α1 y2α2 yNαN weights y1α1 . . . yNαN
b b b

bc

y decision rule

y = sgn
(

∑N

i=1 yiαiK(xi, x) + b
)

Figure 3.3: Structure of a support vector machine [36]. The SVM consists of two layers. The
first layer is constructed during the learning step. It contains all support vectors
xi, i = 1, . . . , N after learning. In this first layer, the basic similarities of the
input vector compared to each SV are computed in the feature space chosen by
the kernel K(x, xi). The second layer builds the linear function in this space.

Different support vector machines can be defined by different kernel functions (see Figure 3.3)
as we already introduced some kernels in Chapter 2, Section 2.1.1. Special kernel functions
for time series analysis were presented in Chapter 2, Section 2.4.2.
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In the present chapter the implementation of the thesis is revealed. All ideas are based on
the fundamentals and on the related work introduced in the chapters before.

First, the overall ideas of the implementation are briefly outlined in Section 4.1. The ar-
guments given in this section shall justify the following algorithm decisions and lay out the
requirements that an algorithm has to fulfill in order to be accepted as solution to the problem
of crash discrimination.

Then the determination of conflicts is presented in Section 4.2. The term conflict is precisely
defined with respect to the formalism of separating hyperplanes as well. Having a formal
definition of them, the search for conflicts can be automated.

Section 4.3 includes all contributions of this thesis toward conflict analysis and the discrim-
ination of crash events. Two improvements based on SV pruning and crash weighting are
considered in Sections 4.3.1 and 4.3.2, respectively. Finally, an approach toward time series
analysis by SVM based on Fisher scores is presented in Section 4.3.3.

4.1 Overall Ideas

This section shall outline the basic approaches of this thesis and justify universal design deci-
sions. Thereto general demands of the learning machine in terms of ability of interpretation
e.g., linearity of the classifier, are explained in Section 4.1.1. Most of the classification prob-
lems, however, might force the learning machine to select a quite complex decision function
that is not easy to interpret and justify. Hence the learning machine shall have the ability of
local complexity in order to relax restrictive requests. Such a concept for local complexity is
introduced in Section 4.1.2.

4.1.1 The Request of Ability of Interpretation

The responsibility of the deployment algorithm of an automobile is immense. Suppose that
a fire event is not recognized by the algorithm before the belt tensioner and airbag have
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to be deployed, respectively. In this case the crash might cause fatal injuries to driver and
passengers. Contrarily, it is clear that a wrongly classified no-fire event will cause injuries to
the passengers due to the forces that belt tensioner and airbag apply to the passengers. In
any case, the fire decision has to be interpretable. Thus the requirements for an algorithm
that has to solve such a real-world problem are very restrictive. The probably three most
important requirements are underlined in the next paragraphs.

At any point of time, the deployment algorithm for a restraint system shall be transparent.
This fact enables a very high ability of interpretation, especially in the case where both crash
data and information about the fire decision stored inside of the ACU has to be assessed after
a crash. The correctness of every fire decision can then be approved by human experts.

For instance, a fuzzy-rule based fire decision can be expressed by natural language easily. Its
sequence of commands for the algorithmic decision can simply be understood by humans. On
the contrary, black box algorithms like artificial neural networks do not offer many insights
into neither the learning process nor the fire decision. Unfortunately, the support vector
method behaves similar to an ANN since it is obtained by solving a convex optimization
problem. Insights how and why certain points become support vectors which would enable
an interpretation would be nice to have but are not available. This is one reason why the
usage of the SV method is not popular for security critical systems like an airbag deployment
algorithm.

The second requirement can be formulated as follows. The algorithm shall be rather simple
than complex. Complex algorithms might suffer from overfitting which is fatal for the de-
ployment algorithm. This becomes clear when having a look at the training set of crashes.
Crash tests are normed and take place in standardized environments. It is understood that
not all different road surfaces, climate zones, loadings and number of passengers can be
performed as crash tests since their procedure is extremely expensive. Complex algorithms
that separately cover nearly every fire and no-fire event might cause non-interpretable fire
decisions in an unknown situation. As a consequence, simple and flexible algorithms do not
suffer from this kind of overfitting.

Simple algorithms will be also much more convincing to the customers due to the following
main reasons. The management who finally decides about the success of a project usually
does have a dissimilar knowledge about the formalisms that are applied to discriminate fire
events from no-fire ones. They will appreciate concepts that are reasonable to interpret.
Therefore algorithms that are easy to understand are preferred to complex ones.

Another very important point that demands simplicity are the expenses for the ACU that
contains the deployment algorithm. Complex algorithms usually requires many more system
resources and embedded systems inside of the ACU than simple ones. In order to have a fast
working ACU that is still inexpensive, simple deployment procedures are a necessity due to
economics.

With respect to the SVM principle as introduced in Chapter 3, Section 3.3, simplicity can
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be expressed by several characteristics of the SV models. Some important characteristics of
support vector machines are discussed below.

The third requirement follows from the fact that all crashes are physical processes (cf. Chap-
ter 1, Section 1.2.1) that have to be understood. Every single crash has to be interpretable
by means of physical properties. Moreover, every fire or no-fire decision needs to be based on
the physics of crashes. As a consequence, the decision making algorithm shall be founded on
the physical nature of crashes, no matter if calibrated by human experts or found heuristically
by a machine.

The ability of physical interpretation is implemented into the algorithm by the variables of the
input space. Raw data coming from the automobile sensors (see Chapter 1, Section 1.2.2) is
rather hard to interpret. Therefore raw sensor data are transformed to physical properties, so-
called features. A selection of real-world features can be found in the following subsection.

Selection of Given Features

The usage of features instead of raw data for decision making algorithms is manifold and was
already explained. This subsection names the features that were used to train the learning
machines that are elucidated in the remainder of this chapter.

Table 4.1: Selection of stable features for calibration. The acceleration sensors in both di-
rections x and y are located inside the ACU.

feature description

feature01 direction of crash
feature02 twice integrated acceleration (length)
feature03 signal progress property (crash time counter after crash beginning)
feature04 symmetry of x-sensor signal to zero line
feature05 velocity of vehicle in x-direction
feature06 slope of velocity in x-direction

The selection of features for the learning step is crucial since they express physical properties
that might be very important for the processes during a crash. Human experts usually
select only a handful out of many different features for the calibration process on account of
performance reasons and the ability of interpretation.

Table 4.1 gives an example of smooth features that are used quite often for the calibration.
Most of them lead to good performances during the calibration process. All of these features
are low-pass filtered and consequently do not suffer from oscillation so much like others.
Since we are interested in rather smooth features for our learning machines, we only take
subsets of the presented list of features for their evaluations.
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Simplicity of Support Vector Machines

With respect to the SVM principle as introduced in Chapter 3, Section 3.3, simplicity of
a SV machine can be expressed by the capacity of the function chosen by the principle of
structural risk minimization. This principle of minimizing the expected risk (see Chapter 3,
Section 3.1.2) controls the capacity such that the chosen hyperplane will guarantee the lowest
error on unseen patterns. Thus it heavily influences the complexity of the SVM.

Problems that are hard to classify will lead to a rather high fraction of support vectors with
big weights αi close to the constant C > 0. The sum of all positive (or negative) weights
αi and the number of support vectors are reasonable measures for simplicity of a SVM. The
complexer the discriminant function has to be, the more support vectors are needed.

Fortunately, the classification problem we deal with does not demand to correctly classify all
of the fire samples of a crash1. On the contrary, a fire crash will be discriminated by only one
correctly classified fire patterns (or two patterns to have more confidence). Thence a pruning
of fire examples that are hard to classify before the actual training might be a striking idea
to simplify the decision function that will be selected by the support vector machine. An
approach to prune the “worst” fire examples is introduced in Section 4.3.1.

Another measure of simplicity is motivated as follows. A priori, the user has to define an
appropriate kernel function for the given learning problem. The linear kernel (2.6) will force
the SVM to find a linear separating hyperplane in the input space. Hence the decision bound-
ary will be linear and easy to interpret. Other, more sophisticated kernels (cf. Chapter 2,
Section 2.1.1) enable the SV machine to choose more complex decision boundaries in order
to solve the problem linear in an unknown very high-dimensional feature space.

Note that only kernels generating radial basis functions (2.11) are based on the Euclidean
distance metric in the input space. This is important to remark since the DDO tool uses
a distance heuristic to determine the crash class of an unseen pattern (see Chapter 2, Sec-
tion 2.3). So the following question arises: How can we determine the “linearity” of kernels
e.g., Gaussian kernels K(x, x′) = exp

(

−γ ||x− x′||2
)

? In [32], it can be found that the
linearity of this type of kernel depends on γ. For small values of γ, the resulting feature
space corresponds geometrically to the input space. The SV method determines a nearly
linear discriminant function. On the other hand, a large γ causes narrow kernels that lead to
complex nonlinear functions in the input space. By choosing a smaller γ meanwhile the grid
search of tuples (C, γ), the decision boundary will be less complex and more interesting for
interpretable models.

1On the other hand, recall that all no-fire patterns have to be correctly recognized.
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4.1.2 Simplicity versus Complexity

The simplicity of a SV model might be necessary in order to accept and approve such a
model. By decreasing the number of possible functions that a SVM can choose, the potential
solution probably becomes simpler. The overall risk (3.2), however, will increase in general.
As a consequence, the actual pattern recognition problem of crash events with respect to its
specifics of discrimination (cf. Chapter 2, Section 2.1.2) may not be solved properly enough
anymore. In other words, the classification of partly non-separable crashes that overlap or
superimpose is not that simple usually.

A priori, there does not exist any information for the SVM if a crash is hard to classify or
critical. A solution to that problem is that the user defines certain weights for those crashes
who impose classification problems, so-called conflicts2. These weights will determine the
importance of those crashes and influence the decision making of the SVM. With the objective
of minimizing both the capacity of the chosen function and the expected risk, there has to be
a trade-off between the global simplicity and the local complexity of the decision function.
Such a concept is explained thoroughly in Section 4.3.2.

Before the ideas for incorporating knowledge into the learning process are introduced, the
next section will finally define the term conflict with regard to the principle of support vector
machines. This will be useful since the search for conflicts is the basis for the evaluation
results in the next chapter.

4.2 The Determination of Conflicts

So far we were talking about crashes that were hard to classify, so-called conflicts. Let us
examine conflicts more precisely with respect to non-linear separating hyperplanes that are
chosen by support vector machines. Thus in this section, the term conflict will be defined.

The definition of a conflict will enable us to search for them when classification has been
applied to all crashes. Found conflicts have to be interpreted in order to solve or remove
them. The analysis of conflicts plays an important role in the calibration process. Conflicts
can occur in every stage and every scaling of a crash.

It is understood that a misclassified crash, either fire or no-fire, imposes a conflict. The only
difference between misclassified fire and no-fire crash is the fact that all fire samples have
to be classified wrongly (located on the wrong side of the separating hyperplane), whereas
just one wrongly discriminated no-fire pattern will change the complete crash into a conflict.
Such misclassified crashes are named critical.

2The term conflict will be defined in the next section.
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Critical crashes are only one type of conflict. The following sort of conflict is only applicable
to fire crashes. Therefore, recall how the TTF for every fire pattern is predicted as it was
explained in Chapter 2, Section 2.3.3. Suppose that a complete fire crash is already classified.
Since the classification implies the assigning of fire times to the complete sample of the crash,
the earliest fire time of the classified crash determines the TTF t∗i for this crash and stage,
respectively whereas i ∈ {1, . . . , S}.

Out of this procedure, a conflict can arise since the TTF t∗i of the crash can be longer
than the required TTF (RTTF) ti. Such a conflict is called late fire since the restraint
system would fire too late or later than the RTTF. If there exists a late fire and its difference
between predicted TTF and RTTF is small (couple of milliseconds), then the importance of
such a conflict is rather low since the restraint protection of driver and passengers will still
be deployed early enough.

As yet these two different kinds of conflicts, critical and late-fire crashes, are completely
independent from the type of learning machine. Such conflicts can be determined by applying
any type of machine learning algorithm that would predict a TTF for every crash. The
following sort of conflict is especially related to learning machines that are based on separating
hyperplanes and kernels defining an Euclidean distance metric.

The Euclidean distance

d(x, α) =
l
∑

i=1,α0

i 6=0

yiα
0
iK(x, xi) + b (4.1)

to the hyperplane in the feature space defined by the kernel K, the weighted support vectors
αiyi and the constant b can be interpreted as a kind of confidence in the discrimination of
pattern x. Instances which are geometrically situated very close to the separating hyperplane
might not be relevant enough for a proper decision due to their similarity to the other corre-
sponding class. On the contrary, a distance d ≥ 1 between an instance and the hyperplane
coincides with a confident discrimination.

One might argue that a pattern x with a distance d < 0.5 to the decision boundary has little
confidence. In our case, we say that a complete crash imposes a conflict if one of its patterns
is closer than 0.5 to the hyperplane. A crash is almost surely correctly classified when the
minimum distance over the crash sample is at least 0.5. Finally, we can state our definition
of a conflict by taking into account three different types of conflicts.

Definition 4.1 (Definition of a conflict) A conflicting crash or (short) conflict C =
(k, T,X , T , ω) meets at least one of the following conditions.

• minx∈X d(x, α) < 0.5 (little confidence)
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• for a fire crash

– All patterns are misclassified (critical fire).

– ∃i : t∗i > ti ∈ T , 1 ≤ i ≤ S (late fire).

• for a no-fire crash

– At least one pattern is misclassified (critical no-fire).

By precisely defining the terminus of a conflict, we are able to search for conflicting crashes
in order to perform a conflict analysis. This concept will be a necessity in the next chapter
when we will evaluate the methods that can be found below.

4.3 Improvements and Extensions of DDO

In the present section, the contributions to the DDO tool are laid out and explained in detail.
Based on the general ideas given in Section 4.1 of this chapter, the following algorithms
establish an approach to both simplicity of the model and local complexity, respectively.

First of all, a promising concept for linearizing a subsequent hyperplane classifier by pruning of
fire support vectors is presented in Section 4.3.1. This pruning algorithm named SV pruning
is based on linear support vector machines such that the remainder of fire patterns is easier
to linearly separate from the no-fire patterns.

The pruning guarantees less complex discriminant functions, however, the separating hyper-
plane might not generalize well on some unseen crashes. Thus the hyperplane shall locally
become more complex in order to ensure a better generalization. An approach toward local
complexity is proposed in Section 4.3.2 as trade-off to the SV pruning method.

Whilst both methods are based on binary classification of multivariate patterns, a different
approach is considered in the rest of this section. As an alternative to standard pattern
recognition which demands an i.i.d. sample, a promising algorithm toward time series analysis
of crashes is presented in Section 4.3.3. Based on a parametrized probability model that tries
to explain the data, multivariate feature vectors, so-called Fisher scores, are computed for all
time series. These new vectors are then discriminated by an arbitrary SV machine.
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4.3.1 Pruning of Support Vectors

As we already sketched in Section 4.1.1, a learning machine that shall discriminate crash
events has to be interpretable in order to be approved due to security standards. Easier
machines (models) are favored instead of models that are hard to understand. Support
vector machines might be theoretically very well motivated, however, the feature space is
never expressed explicitly. If we can construct a feature space that is geometrically similar
to the input space without using the linear kernel (2.6), then it is possible to interpret and
understand the resulting machine to a higher degree.

The idea is to favor linear classifiers by pruning a certain amount of patterns that are very
hard to classify linearly. Since we deal with a highly unbalanced pattern recognition problem
(see Chapter 2, Section 2.1.2), a pruning of no-fire patterns is strictly forbidden. On the
other hand, we only need one fire pattern before the RTTF in order to correctly deploy the
restraint system. Therefore, pruning is only possible for fire patterns.

The pruning shall remove candidates for critical fire instances from the dataset. It shall not
remove complete fire crashes since all crashes have to be considered for the discrimination.
The subsequent SVM learned during training without these critical fires should have an easier
decision boundary than with pruned fire instances. Thus the C in the grid search of the model
selection step should be rather small or around one. The margin should become wider as
well since a better linear separation of fire and no-fire samples can be achieved for unseen
patterns. Moreover, the pruning serves the analysis of conflicts due to the fact that an easier
discriminant function may reveal conflicts more easily than a complex model.

The pruning is realized in two steps: while the selection of the training set and in the method
of model selection. The next two subsections will present the algorithms to prune fire patterns
before and during the training process.

Training Set Selection by Pruning of Support Vectors

The first pruning process is motivated by the fact that a linear discriminant function of fires
and no-fires is geometrically the easiest one. Furthermore, misclassified points, no matter if
fire or no-fire patterns, will automatically become support vectors of the linear machine. The
farthest fire support vectors3 on the no-fire side of the hyperplane are the ones that will have
a big influence on the model selection step since it is very probable that they will become
support vectors again even with a more sophisticated kernel.

This kind of support vectors are the reason for two major influences that may occur after
training set selection during the actual training process. First of all, there might be an
undesired shift of the hyperplane. Second, it is possible to obtain so-called island solutions

3The distance to the hyperplane is given by Equation (4.1).
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by applying a non-linear kernel. The farthest fire support vectors “pull” and shift the decision
boundary locally by their weights such that undesired complex structures of the hyperplane
can occur. On the other hand, their distance to the next no-fire support vector might be
big compared to the distances among the no-fire support vectors. Their weights may radiate
very much so that islands of fire areas next to their positions can occur. Since such a
complex decision boundary would form fire islands surrounded by no-fire areas, we refer to
such a discriminant function as island solution. An island solution is very hard to interpret
and justify since there does not exist one unique linear functional dependency between the
chosen input variables.

It is natural to remove those fire patterns that might cause conflicts4. It shall be guaranteed,
however, that every fire crash is represented by at least m fire patterns in the final training
set. This is an important prerequisite for the subsequent SVM training since a minimal
number of training instances for every crash ensures the generalization performance.

The pruning can be briefly explained by the following 4 procedures:

1. Train a linear SV machine with all fire and no-fire patterns.

2. Identify misclassified fire support vectors.

3. Create a training set without these fire samples.

4. Start training again and repeat this process until a stable model is obtained.

The third procedure has to assure that none of the crashes is totally pruned. This is done by
pruning every crash separately. Only the farthest wrong fire support vectors of every crash
are pruned such that the remainder of fire points of that crash is at least m. After all fire
crashes are pruned for the first time, a new linear classifier is trained and the procedure begins
again until the number of pruned support vectors equals zero.

Note that this iterative procedure of SV pruning is somehow related to boosting [30, 31]
where a weak classifier is used to find hard to classify instances. Applying boosting, their
weights are then increased whereas we drastically set these weights to zero by removing them
from the training set. We do not apply boosting since a fire crash event will be recognized
if one single fire instance is correctly classified.

The pruning method is explained thoroughly in Algorithm 1. Heuristically, m = 10 in line 1
which ensures that at least 10 patterns of every fire crash will join into the training set. The
linear SVM is trained with a constant value of C = 10 (line 5). This parameter controls the
amount of pruned fire examples. The smaller C, the more wrong fire support vectors will be
pruned. A value of 10 performed well in practice.

4See Section 4.2 for a definition of conflicts.
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Algorithm 1 Training set selection by pruning of support vectors.

Input: crash data (x1, y1), . . . , (xl, yl) ∈ X × {±1} of all crashes Ck, 1 ≤ k ≤ K
Output: training set X ∗ × {±1} ⊆ X × {±1}
1: m← 10 // minimum number of fire samples per crash
2: X ∗ × {±1} ← X × {±1} // initial X ∗ contains all no-fires and fires
3: M← ∅ // initialize the linear support vector machine
4: repeat

5: M =M(α,S × {±1} ⊂ X ∗ × {±1}, b)← train lin. C-SVM, X ∗ × {±1}, C = 10
6: predict labels {±1} ≡ {fire, no-fire} and distances D to the hyperplane of x ∈ S
7: for every training set X ∗

k ⊂ X ∗, 1 ≤ k ≤ K do

8: sort every wrong fire SV x ∈ S \ X ∗
k in descending order according to D

9: prune every wrong fire SV x ∈ S \X ∗
k of X ∗ with biggest distance s.t. |X ∗

k | ≥ m
10: end for

11: until no crash pruned
12: return X ∗

In line 6, the predicted class and distance to the hyperplane (4.1) for every x ∈ S of the
linear SV machine M are computed whereas S is the set of support vectors. Thus it is
straightforward to find the farthest wrongly classified fire support vectors.

Since the complete DDO tool is realized in MATLAB, the pruning of fires is implemented in
this script language as well. Instead of the standard method for the selection of the training
set5, the user can choose the pruning algorithm to construct a training set6.

Model Selection by Grid Search and Support Vector Pruning

Whereas most of the fire patterns are pruned in the selection of the training set by applying
Algorithm 1, the following algorithm only prunes few fire patterns in the step of model
selection. Recall that model selection in DDO is based on grid search as it was outlined in
Chapter 2, Section 2.3.2. Moreover, the SV machines that are trained during model selection
are based on the Gaussian RBF kernel (2.12).

If pruning shall be applied to the support vectors of a constructed machine, it has to be done
for every tuple (C, γ) in the iteration method. A nested loop iterates over selected γ and
C values, respectively. It is straightforward to add the pruning method into this nested loop
by nesting another loop into it that runs as long as there were pruned fire patterns in the
last iteration. The standard training method where the model selection is applied has been
extended according to the described SV pruning7.

5The standard algorithm for training set selection is implemented in selectTrainingSetScaled.m.
6The training set selection based on pruning can be found in the file named selectTrainingSetPruned.m
7The SVM training algorithm based on model selection and pruning is implemented in the method
modelSelectionSVM() in the MATLAB file svmFeatureBackwardSelection.m. An optional boolean
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Since the Gaussian kernel can construct much more complex discriminant functions than the
linear one, it is understood that barely any fire pattern is pruned compared to the SV pruning
during training set selection. Nevertheless every reduction of the number of support vectors
without inducing more critical crashes and errors leads to a simpler model which is preferred
to a SV machine with many support vectors.

Algorithm 2 Model selection by grid search and support vector pruning

Input: training set X ∗ × {±1}, test set V × {±1}
Output: SV machineM =M(α, S × {±1} ⊂ X ∗ × {±1}, b, γ)
1: m← 2 // minimum number of fire samples per crash
2: X ∗

0 × {±1} ← X ∗ × {±1} // backup of the original training set
3: M∗ ← ∅; n∗

CC ←∞; n∗
CE ←∞ // init. SVM, number of crit. crashes and errors

4: for all γi ∈ {0.1, 0.2, . . . , 0.9} do

5: for all Ci ∈ {1, . . . , 5} do

6: X ∗ × {±1} ← X ∗
0 × {±1} // restore the original training set

7: repeat

8: M← train Gaussian C-SVM with T × {±1}, C = Ci, γ = γi

9: (nCC , nCE)← testM on V × {±1}
10: if ((nCC < n∗

CC) ∨ ((nCC = n∗
CC) ∧ (nCE < n∗

CE))) then

11: M∗ ←M; n∗
CC ← nCC ; n∗

CE ← nCE // a better model has been found
12: end if

13: if (n∗
CE = 0) then

14: return M∗

15: end if

16: ∀X ∗
k ∈ X ∗, 1 ≤ k ≤ K : prune farthest wrong fire SV of X ∗

k s.t. |X ∗
k | ≥ m

17: until (n∗
CE = 0)∨ no SV pruned

18: if (n∗
CE = 0) then

19: return M∗

20: end if

21: end for

22: if (n∗
CE = 0) then

23: return M∗

24: end if

25: end for

26: return M∗

The pseudocode of this pruning method can be found in Algorithm 2. Note that in line 1
the number of minimum patterns per fire crash m differs dramatically from the one that was
used in Algorithm 1, line 1. In the training set selection, we wanted to ensure that at least
10 patterns of every fire crash come into the training sample. Since the SVM for the training
step uses the Gaussian kernel, the machine does not find the optimal separating hyperplane
in the input space like the linear kernel. Regarding the training, a restraint system is deployed
when one single fire is recognized. The recognition of two instead of one pattern is due to

variable PRUNING is set to true if pruning shall be applied during model selection.
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the higher confidence that results when a second fire is recognized. Thus m is set to two
during training.

In line 2, a copy of the original training set is created. This is needed since for every new
tuple (C, γ), the pruning has to start with the original training sample which probably has
been reduced before (see line 6). The actual training of the SVM is done in line 8. Then the
modelM is validated in line 9 with regard to the number of critical crashes nCC and critical
errors nCE (cf. Chapter 2, Section 2.3.2). If the current model M is better than the best
on so far, namedM∗, thenM∗ is replaced by the current one in line 11. If this modelM∗

does not impose any critical errors nCE = 0, grid search comes to an end and the model is
returned.

If there is at least one critical error, the pruning starts another loop. Since the procedure for
the pruning is the same as in Algorithm 1, lines 7–10, it is shortened in Algorithm 2, line 16.
The pruning is performed until nCE = 0 or no SV was pruned. Then the next tuple (C, γ)
is considered and the pruning eventually starts again8.

If there does not exist any tuple (C, γ) such that nCE = 0, then the model M∗ with the
lowest nCC and nCE will be returned. In worst case, grid search will select the most complex
SVM with C = 5 and a Gaussian kernel parameter γ = 0.9 . This is highly undesired since
high γ values coincide with a big geometrical dissimilarity between input and feature space.
Moreover, the higher C, the farther the distance of a wrongly classified SV to the hyperplane.
With regard to the ability of interpretation, we are looking for a tuple (C, γ) with both C ≈ 1
and positive γ ≈ 0.

The next section will introduce another contribution to the DDO tool. Instead of simplifying
the SV machine, the following procedure will locally complicate the discriminant function
obtained by the SVM. The best quality of the undermentioned idea is that it can be combined
with the pruning algorithms introduced above.

4.3.2 Priority of Crashes by Weighting

The simplicity of both the SV machine and its discriminant function is very nice to have. On
the contrary, the model shall also deploy all fire crashes and prevent deployment of all no-fire
crashes. As a consequence, a trade-off between simplicity and complexity has to be found.
Whereas the last section already presented an approach to global simplicity, this section will
introduce a slight modification of the standard C-SV machine which enables us to locally
complicate the discriminant function.

Before the modification is dealt with, let us motivate adoptions of SVM toward the calibration

8Note that the standard grid search procedure can be obtained from Algorithm 2 by removing lines 7,
13–17.
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process. Since we want to emulate and support this process with the principle of the SV
method, strategies of calibration have to be modeled into the SVM. One of this strategy is
the concept of prioritized crashes.

Customer requirements like

• “Ensure not deploying for all no-fires!”

• “Ensure always deploying all fires!”

• “AZT Crash with 16 km/h should not deploy under any circumstances!”

result from the fact that some crashes are more important than others since they are more
critical or very crucial. These demands can be modeled by assigning weights to prioritized
crashes. The higher the weight of a crash, the more its misclassification has to be prevented
by all means. If such a knowledge is available, it can be incorporated into our learning
machine.

To have an understanding of what is changed compared to the standard SVM, we have to
recall the problem of minimizing the functional

Φ(ψ, ξ) =
1

2
〈ψ, ψ〉+ C

(

l
∑

i=1

ξi

)

(4.2)

subject to

F (ξ) =
l
∑

i=1

ξi. (4.3)

In general, the global parameter C expresses the costs for a misclassification for every pattern.
It is set to one by default. As a consequence, a priori all patterns are treated the same without
any information of priority. By minimizing

Φ(ψ, ξ) =
1

2
〈ψ, ψ〉+ C

(

l
∑

i=1

Ciξi

)

(4.4)

subject to (4.3), we can define weights Ci for the training instances xi, 1 ≤ i ≤ l. Thus it
is straightforward to assign weights to complete crashes.
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Therefore changes of the software package that provides the methodology of SV machines
have been performed. The DDO tool (cf. Chapter 2, Section 2.3) uses the SVM package
LIBSVM [12]. Fortunately there exists already a LIBSVM tool that enables applying a
different weight to every training instance [13]. Hence the changes of the code for DDO are
based on that tool.

In combination with the pruning method that was introduced in the last section, the assign-
ment of priorities by weighting of single training crashes can be a powerful tool to ensure
both an interpretable model and the fulfillment of customer requirements. It might be a good
procedure for calibration to first apply the pruning methods and then have a look which fire
crashes do not fire and which no-fire crashes do fire, respectively. Finally, pruning can be
coupled to the assignment of weights in order to solve the conflicts that arose before.

4.3.3 Time Series Analysis based on Fisher Scores

The general pattern recognition problem as it was formally introduced in Chapter 3, Sec-
tion 3.1 requires that all patterns are i.i.d. and thence do not have any coherence despite the
unknown probability distribution where they were drawn from. In the case of crash events,
however, there exists a temporal coherence since a crash test is a series of points in time.
The naive assumption of i.i.d. patterns does not hold in our case and might already imply
conceptual mistakes.

Therefore another, more profound approach is regarded in this section. The goal is to
represent every crash by a multivariate vector. The computation of this vector is based
on a probabilistic generative model P (X|θ) that tries to explain the data (cf. Chapter 2,
Section 2.4.3 and its subsections). The advantage of parametrized generative models e.g.,
Gaussian mixture models, is their ability to handle arbitrarily long sequences of multivariate
patterns (e.g, time series). By computing Fisher scores based on Equation (2.30), every
sequence is represented by a vector of fixed length and can be discriminated by a support
vector machine afterward.

The biggest problem is the training of the parametrized model P (X|θ). Whereas a SVM is
based on a convex optimization problem with a unique optimal solution, the gradient based
approaching to a local minimum does not guarantee the globally best model that describes
data X in a good way. Another problem is the number of Gaussian mixtures m of the
parameter θ = (θ1, . . . , θm) that has to be chosen by the user in advance of the training
process. Different values of m drastically change the performance of the model P (X|θ) and
also the subsequent discrimination by SVM.

First of all, the model P (X|θ) is only trained on either fire or no-fire patterns. This raises
the probability of the class that has been considered for training and vice versa. Assume that
the parametrized model has been trained with a subset of fire patterns. Then the model is
trained to determined if a pattern is a fire or not. Presented no-fire patterns are unknow
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to the model and thus probably do not belong to the fire class. This already establishes
a profound basis for the subsequently applied discriminative model. However, it has to be
stressed again that the generative performance of the probabilistic model is highly unstable.

The training routine for the GMM is based on a MATLAB package developed by the Naval
Undersea Warfare Center [8]. It provides a powerful and fast training method for GMMs and
HMMs, respectively. Moreover, this tool enables a visualization of the learned multivariate
distributions by plotting of two-dimensional subspaces.

After training P (X|θ), one has to determine the parameter θ which can be any model
parameter e.g., mean µ, standard deviation σ, a priori probability p or covariance matrix
Σ. Say, we choose θ ≡ µ = (µ1, . . . , µm). Furthermore, the training set including fires
and no-fires for computing the Fisher scores has to be transformed into sliding windows (see
Chapter 2, Section 2.4.1) to ensure an early fire decision before the RTTF.

For every sliding window9 X = (x1, x2, . . . , xw), we have to compute its Fisher score. Based
on Equation (2.30), the Fisher score for every Gaussian mixture fi, i ∈ {1, . . . ,m} can be
written as

∇µi
logP (X|µi) =

w
∑

t=1

pi(xt)Σ
−1
i (xt − µi) (4.5)

whereas pi(xt) corresponds to the a posteriori probability of the distribution fi given the
observation xt. The complete Fisher score

Uθ(X) = Uµ(X) = (∇µ1
logP (X|µ1), . . . ,∇µm

logP (X|µm)) (4.6)

of the sequence X can then be utilized as input for the SVM. In fact, every discriminative
classifier can handle the problem after transformation of the sequences to Fisher scores.

9Note that we omitted all indices of a sliding window in order to facilitate the notation.
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In the present chapter, the suggested methods of the previous chapter are evaluated by
experimentation based on a real-word crash database. The utilized crash dataset and its
characteristics are discussed in Section 5.1. Moreover, insights into the classification results
obtained by applying the DDO tool are given in Section 5.1.2.

Many experiments applying different ideas have been carried out on this crash database. The
experimental results of the proposed methods can be found in the remainder of this chapter.
First of all, the evaluation of DDO in combination with weighted crashes is presented in
Section 5.2. Then the results regarding support vector pruning for training set and model
selection are demonstrated in Section 5.3.

Section 5.4 elegantly combines both methods of SV pruning and crash weighting and gives
evaluations based on the real-world database. Whereas the learning machines so far con-
sidered all crash modes together, the combination of both techniques is applied to models
regarding pairs of crash modes as well. Since we deal with discrimination of no-fires and fires,
the pairs coincide with model for AZT vs. wall crashes (Section 5.4.1), AZT vs. angular
crashes (Section 5.4.2) and AZT vs. ODB crashes (Section 5.4.3).

Section 5.5 concludes with the evaluation of a hybrid approach of a probabilistic generative
model in combination with a SV machine. This idea shall be a first step toward time series
analysis of crash events.

5.1 A Real-World Application

In the present section, the real-world dataset that has been used for the evaluation of the
proposed methods is presented and examined first. Moreover, the DDO tool (cf. Chapter 2,
Section 2.3) is then used to train a SVM with a Gaussian kernel (2.12) generating radial basis
functions. The tests include all 5 stages and 11 crash scalings of the dataset. Results with
respect to conflicts, generalization performance and model complexity are listed in tabular
form.
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5.1.1 Characteristics of the Crash Database

Let us start with the characteristics and particulars of the given dataset. The specific vehicle
platform which was used for crash tests will be available in the near future. The crash
database contains nearly 80 different crash tests including AZT, wall, angular, ODB and
misuse crashes. Since we only consider the first 4 types of crashes as outlined in Chapter 1,
Section 1.3.1, misuses are omitted from all tests. There exist 5 stages of severity as they have
been listed in Chapter 2, Table 2.1. Thence the used automobile platform has a five-stage
restraint system with belt tensioner and two-stage airbag in various combinations. Hence
there have to be 5 RTTFs, one for every stage.

Every raw signal was scaled according to the percentages {0,±5,±10,±15,±20,±25}. Thus
every crash signal exists in 11 different versions. In addition, the features that are computed
from raw data differ from every scaling as well. All in all, more than 50 different features
are available in the crash database. However, for this thesis we will only consider the most
stable for calibration. These features can be found in Chapter 4, Table 4.1.

The remaining crashes without misuse crashes amount 63 in total which originate from 5
AZT, 22 wall, 13 angular and 23 ODB crashes. A description of every crash is given in
Table 5.1 including key, relative velocity1 and the RTTFs for all stages.

Table 5.1: Description of the real-world crash database used for evaluation. A stage of which
RTTF is zero corresponds to the non-deployment of this stage. All AZT and two
wall crashes are no-fires whereas the remaining crashes are fires.

crash key speed [km/h] RTTF for stage [ms]
1 2 3 4 5

wall01 56.6 13 13 14 18 19
wall02 56.6 13 13 14 18 19
wall03 56.0 13 13 14 18 19
wall04 56.0 13 13 14 18 19
wall05 56.0 13 13 14 18 19
wall06 50.0 14 14 15 19 20
wall07 50.0 14 15 15 19 20
wall08 50.0 14 15 15 19 20
wall09 50.0 14 15 15 19 20
wall10 50.0 14 15 15 19 20
wall11 40.4 15 15 16 20 21
wall12 40.0 15 15 16 20 21
wall13 40.5 22 22 23 27 28
wall14 32.0 27 27 28 32 33
wall15 32.0 27 27 28 32 33
wall16 32.0 27 27 28 32 33

1In the remainder of this thesis, we will refer to the relative velocity v0 as speed due to simplicity.
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Table 5.1: (continued)

crash key speed [km/h] RTTF for stage [ms]
1 2 3 4 5

wall17 27.0 32 32 33 0 0
wall18 27.0 32 32 33 0 0
wall19 27.0 32 32 33 0 0
wall20 27.0 32 32 33 0 0
wall21 16.0 0 0 0 0 0
wall22 15.8 0 0 0 0 0
angular01 50.0 18 18 19 23 24
angular02 40.0 20 20 21 25 26
angular03 40.0 20 20 21 25 26
angular04 40.0 20 20 21 25 26
angular05 40.0 20 20 21 25 26
angular06 40.0 20 20 21 25 26
angular07 40.0 20 20 21 25 26
angular08 40.0 20 20 21 25 26
angular09 40.0 20 20 21 25 26
angular10 32.0 22 22 23 27 28
angular11 32.0 22 22 23 27 28
angular12 32.0 22 22 23 27 28
angular13 32.0 22 22 23 27 28
ODB01 64.0 24 24 25 29 30
ODB02 64.0 24 24 25 29 30
ODB03 64.0 24 24 25 29 30
ODB04 64.0 24 24 25 29 30
ODB05 64.0 24 24 25 29 30
ODB06 64.0 24 24 25 29 30
ODB07 64.0 24 24 25 29 30
ODB08 64.0 24 24 25 29 30
ODB09 64.0 24 24 25 29 30
ODB10 64.0 24 24 25 29 30
ODB11 64.0 24 24 25 29 30
ODB12 64.0 24 24 25 29 30
ODB13 64.0 24 24 25 29 30
ODB14 60.0 30 30 32 35 37
ODB15 60.0 30 30 32 35 37
ODB16 60.0 30 30 32 35 37
ODB17 60.0 30 30 32 35 37
ODB18 48.0 40 40 42 45 47
ODB19 40.0 44 44 45 49 50
ODB20 40.0 44 44 45 49 50
ODB21 40.0 44 44 45 49 50
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Table 5.1: (continued)

crash key speed [km/h] RTTF for stage [ms]
1 2 3 4 5

ODB22 40.0 44 44 45 49 50
ODB23 40.0 44 44 45 49 50
AZT01 15.0 0 0 0 0 0
AZT02 15.0 0 0 0 0 0
AZT03 15.0 0 0 0 0 0
AZT04 15.0 0 0 0 0 0
AZT05 15.0 0 0 0 0 0

Examining the table more in detail, there are some particulars that have to be analyzed.
Every stage of a no-fire crash corresponds to a RTTF of zero. This expresses that this stage
of the restraint system shall not be deployed. According to Table 5.1, there are 7 no-fire
crashes (two wall and 5 AZT crashes) where all stages have a RTTF of zero. Moreover, there
exist both high-speed crashes up to 64 km/h and low-speed crashes around 15 km/h.

It is fundamental to note that unfortunately some crash tests were performed with different
car platforms. For example, some of these automobiles have had a less stiffer front than
cars of other crash tests. Some vehicles have had other engines which is also one cause of
a different behavior during a crash. Due to these discrepancies in the crash database, one
cannot expect to fulfill all customer requirements. It is hard, for instance to keep the same
low RTTF for a car with a smaller stiffness since an inelastic front enables an earlier crash
detection.

To have an idea about the influence of different platforms in one database and how features
look like, the Figures 5.1 to 5.4 show crash signals of two crashes each with the same speed.
The presented features2 (see Chapter 4, Table 4.1 for elucidations) are normalized to the
unit interval [0, 1] and plotted over time with an offset such that every curve can be shown
in one plot. In addition, the RTTF is plotted as well as vertical dashed line. Only the RTTF
for the first stage ts=1 = t1 is plotted. This time t1 is always the earliest among all fire times
and thus usually the hardest task for our learning machine.

First of all, two 27 km/h wall crashes are shown in Figure 5.1. The plot on the left side
represents the same type of crash as on the right side. However, the automobile used for
the crash on the right side was equipped differently e.g., with a less stiffer front. As a
consequence to this fact, the behaviors of both cars in crash scenarios differ a lot from each
other. For instance, the curve of the feature X_Symmetry has a huge peek around the RTTF
on the left-hand side whereas such a peek occurs approximately 70 ms later on the right-hand

2The plotted features are based on unscaled raw data. The other 10 scalings {±5,±10,±15,±20,±25}
are omitted due to simplicity.
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Figure 5.1: Crash signals of two 27 km/h wall crashes. The left-hand plot originates from a
car with a different setup than the plot on the right-hand side.

side. Further differences can be found which are not discussed here. We only intend to show
the impurity of the database that the learning machine has to deal with.
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Figure 5.2: Crash signals of two 40 km/h left angular crashes. The car setups again differ
between the left and right plot.

Let us have a look at some signals coming from angular crashes. Figure 5.2 shows two of
them. Both angular crashes have been performed at the same speed of 40 km/h. In addition,
these two crashes demand a deployment of the belt tensioner at 20 ms each, although the
automobile setups used in these crashes differ again from each other. Hence some features
are quite different in their characteristics e.g., X_AngleSin or X_Symmetry.

Two candidates of ODB crashes are shown in Figure 5.3. As we already presented quite
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Figure 5.3: Crash signals of two left ODB crashes performed at 60 km/h. Again different car
platforms were used in both crash tests.

diverse signals for the wall and angular crash mode, this figure again gives an example how
various crash signals may look like although the corresponding crashes were executed at the
same speed.

To conclude the overview of crash mode signals, two AZT crashes are presented in Figure 5.4.
Whereas a learning machine does not need any crash signal after a fire decision is made, here
the “complete” signal plays a fundamental role. A false detection of a fire crash meanwhile a
no-fire crash may cause severe injuries. Therefore these signals are crucial for the performance
of a learning machine. The plots might suggest the deployment of the belt tensioner after
approximately 25 ms since the features resemble wall crashes very much.

Based on 63 crashes partly introduced in this section, classifiers have been trained in order
to solve the discrimination of these crash events correctly. The next section starts with the
results that can be obtained by applying the standard version of the DDO tool.

5.1.2 Results Obtained by Applying Standard DDO

Now we inspect the classification results based on the standard DDO setting. A support
vector machine with Gaussian RBF kernel (2.12) has to be trained separately on every stage.
The initial training data consists of all crashes as shown in Table 5.1 but only the scalings
{−15, 0,+15}. The remaining scalings {±5,±10,±20,±25} are unknown to the SVM.

We used 5 out of the presented features in Chapter 4, Table 4.1 as input variables. Doing
so, we guarantee that all chosen features are stable (low-pass filtered). They shall reflect the
physical properties of all used crash modes to a certain degree. Of course, the performance
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Figure 5.4: Crash signals of two AZT crashes performed at 15 km/h. It is important to note
that although the signals are normalized to the unit interval, the magnitude of
fire and no-fire signals does not differ to a big degree.

of the SVM massively depends on the selection of features. Nevertheless, we will use this set
of features for the following tests.

As we already stated out in Chapter 2, Section 2.3.1, we can further cut fire and no-fire
signals, respectively. Therefore the initial settings have to be specified by the user. Since we
want a prediction of the fire crashes earlier or around the RTTF, the settings are defined as
follows. The parameters t< and t> are both set to zero whereas t− = −10 and t+ = 1. Thus
the fire range {t−s , . . . , ts, . . . , t+s } = {ts − 10, . . . , ts, . . . , ts + 1} which ensures a training
set consisting of instances around the RTTF ts.

This initial set of instances is further reduced by the standard methods presented in Chapter 2,
Section 2.3.1. The no-fire patterns of every crash are cutoff at 250 ms where all signals
correspond to a flat line anyway. The fires of the computed fire range with the highest stress
are then taken away from the training set as well. Finally, after cutting all no-fire crashes and
selecting the best fires of every fire crash around the RTTF, the training set is constructed.

During the training procedure (cf. Chapter 2, Section 2.3.2), the no-fire patterns are weighted
by the SVM with 40. In general, every pattern has got the weight of one for training a SVM.
However, LIBSVM [12] enables to assign different weights to every class3. This weight shall
prevent the deployment of the restraint system since no-fire patterns are then very hard to
classify wrongly.

Performing the grid search procedure for SV model selection, an appropriate machine has
been chosen for prediction. The conflicts after classification of the test set (all crashes with

3Recall that our problem is a binary classification since we deal with the discrimination of fires from no-fires.
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Table 5.2: Conflicting crashes predicted by Gaussian RBF SVM based on grid search. Every
no-fire instance is weighted with 40. From all 11 scalings per crash, only the worst
conflict of all scalings is shown whereas a critical fire F or no-fire NF is a bigger
conflict than little confidence lc or a late fire LF.

crash key stage 1 stage 2 stage 3 stage 4 stage 5

wall01 lcF lcF LF
wall02 lcF lcF LF F F
wall03 lcF lcF lcF lcF
wall04 lcF lcF
wall05 LF F F
wall06 lcF lcF F F
wall07 lcF lcF F F
wall08 F
wall09 lcF F F
wall10 F F F
wall11 F F
wall12 F F lcF
wall13 lcF lcF
wall14 F F
wall15 F F
wall16 F F
wall17 NF NF
wall19 lcF
AZT01 lcNF lcNF NF
AZT02 lcNF lcNF lcNF
AZT03 lcNF lcNF lcNF
AZT04 lcNF lcNF lcNF lcNF lcNF
AZT05 NF NF NF NF lcNF
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all scalings) are shown in Table 5.2. The worst conflicts e.g., critical fires (F) and critical
no-fires (NF), are highlighted.

Table 5.3: Solved crashes and model complexity of RBF SVM found by grid search. Although
only 63 crashes exist in the database, many more crashes arise due to the different
scalings. The last three columns represent the complexity of the found SVM. The
higher any of the values C, γ or #SVs, the more complex is the discriminant
function in general.

stage fire crashes no-fire crashes model complexity
solved total solved total C γ #SVs

1 612 616 76 77 5 0.8 559
2 615 616 76 77 5 0.8 560
3 616 616 75 77 5 0.6 555
4 546 572 119 121 5 0.9 575
5 548 572 120 121 5 0.9 550

Table 5.3 finally gives insight into the overall performance of the RBF SVM obtained by
applying grid search. It shows the number of crashes that are correctly classified. We will
refer to this type of crashes as solved crashes. The SVM performs well on all stages as
one can see immediately. At most two no-fire crashes have not been recognized correctly.
However, many fire crashes (up to 26) have been completely misclassified especially in stage
4 and 5.

Another disadvantage is the obtained SV machine itself since it results in a complex model
in every stage after model selection based on (C, γ) grid search. The complexity parameters
for all 5 stages are listed in Table 5.3 as well. For all stages, the returned C = 5 and thus
reaches the maximum of possible values. Recall that we demand a small C ≈ 1 for a simple
model. Moreover, γ = 0.6 for the third stage is the smallest of all 5 stages4. The high values
for C and γ lead to a high number of support vectors which lies around 560.

Two goals can be formulated after inspecting the classification of DDO. First of all, we have
to incorporate more knowledge in order to classify all non-conflicting crashes correctly. If the
conflicts remain and all other crashes have been recognized in the right way, then we have
obtained an optimal solution to our problem of crash discrimination and conflict analysis.
Second, the model parameters in terms of C, γ and the number of support vectors have to
be reduced to ensure an easier model. Therefore we will start applying a different training
method to the same training set in the next section in order to force the SVM to classify the
remaining non-critical crashes correctly.

4Note that γ = 0.1 is the smallest possible value in the DDO grid search procedure.
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5.2 Results for Weighted Crashes

In the present section, we apply the weighting technique that has been introduced in Chap-
ter 4, Section 4.3.2 in order to solve the left over non-conflicting crashes (especially the ones
that are critical after the last tests). The following tests have been performed under the same
conditions like the ones in the last section concerning chosen features, kernel, class weight
of 40 for no-fires, the training set and the model selection step based on grid search.

We simply introduced additional weights for these crashes who had been critical after testing.
Of course, both the remaining crashes that have been recognized as critical and the weights
depend on the stage as already shown in Table 5.2. This is due to the fact that a different
stage may define a different RTTF for the same crash. Every crash weight was set to Ci = 4
for all instances indexed by i of former conflicting crashes. The additional weights Ci are
multiplied by the class weight wnf for no-fires and wf for fires, respectively. Here and in the
last section5, the tests were performed using wnf = 40 and wf = 1. The global weight C
that is chosen whilst model selection is still applied to every instance. As a consequence, the
weight of an instance multiplicative arises from C ·wnf ·Ci and C ·wf ·Ci, respectively6.

Table 5.4: Conflicts with RBF SVM found by grid search and weighted crashes. Every no-fire
instance is weighted with 40. In addition, every former conflicting crash has got a
multiplicative weight of 4. From all 11 scalings per crash, only the worst conflict
of all scalings is shown whereas a critical fire F or no-fire NF is a bigger conflict
than little confidence lc. Weighted crashes that still impose conflicts are marked
by w.

crash key stage 1 stage 2 stage 3 stage 4 stage 5

wall17 NF NF
wall18 NF NF
wall19 NF NF
wall20 NF NF
wall21 NF NF NF lcNF lcNF
wall22 NF NF NF NF NF
AZT01 NF NF w,NF NF lcNF
AZT02 NF NF NF NF NF
AZT03 NF NF NF lcNF lcNF
AZT04 NF NF NF NF NF
AZT05 w,NF w,NF w,NF NF NF

The results with respect to conflicts of the weighted crashes are found in Table 5.4. The
positive remark is the fact that there is not any conflicting fire crash in all stages. However,

5Recall that the class weight of 40 for no-fires results from the fact that we want to ensure the non-
deployment of no-fire crashes.

6Note that the class weights wnf and wf can be set by LIBSVM through the training parameters -w0 and
-w1, respectively
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the conflicts somehow “shifted” toward no-fire crashes. The number of misclassified no-fire
crashes must be high due to the high occurrence of critical no-fire crashes although only the
conflict of the worst conflicting scaling is shown in the table. Note that the first 4 crashes
listed in Table 5.4 have a positive RTTF in stage 1 to 3 and a RTTF of zero in stage 4 and
5, respectively.

Table 5.5: Solved crashes and complexity of Gaussian SVM by grid search and weighted
crashes. All fire crashes have been solved with a huge drawback. Less than 50%
of the no-fires crashes of 1st and 2nd stage are correctly classified.

stage fire crashes no-fire crashes model complexity
solved total solved total C γ #SVs

1 616 616 35 77 5 0.9 492
2 616 616 35 77 5 0.9 493
3 616 616 47 77 5 0.8 472
4 572 572 65 121 3 0.3 691
5 572 572 68 121 5 0.4 608

Finally, Table 5.5 concludes the tests of weighted crashes as input for the SV model selection
based on grid search. As it was already outlined before, the generalization performance of
the SV machines for all stages is very poor with regard to the no-fire crashes. Whereas all fire
crashes are correctly labeled due to a higher weight, the classification of the no-fire crashes
totally fails. Especially for the first and second stage, less than 50% of the no-fire crashes
are classified right.

As we can further resolve from the overall results given in Table 5.5, the complexity of the
obtained SV machines is still very high. All stages except the 4th one lead to C = 5.
Moreover, a very high γ ≥ 0.8 has been found for the first three stages. The number of
support vectors even exceeds the former results at more than 50 for stages 4 and 5.

As a consequence, this does not imply that the method for weighting as introduced in
Chapter 4, Section 4.3.2 does not have any benefit. It is rather the set of training instances
that does not enable a simple model which still generalizes well on the test set. We already
gained complex models in the standard DDO tool. It is logical that applying weights in order
to introduce a higher local complexity does not conclude in easier models.

The preference of fire crashes by weighting them has shifted the decision boundary in favor of
fire patterns and against no-fire patterns, respectively. Hence we drastically have to change
the way a training set is selected in order to give predilection to no-fire crashes since they
are most essential for the success of our learning machine.
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5.3 Evaluation of Support Vector Pruning

The results presented in the last two sections formally ask for more sophisticated methods
for selecting an appropriate training set. This section presents the evaluation of such an
approach toward simple and still powerful models. The method for pruning of support vectors
as proposed in Chapter 4, Section 4.3.1 has been evaluated as follows.

Again we used the same set of features as suggested in Section 5.1.2. Moreover, the initial
settings controlling the range of fire instances for every crash remained the same. We only
changed the procedure for training set and model selection, respectively.

The training set has been constructed using Algorithm 1 as suggested in the last chapter. The
SV machine that is chosen by model selection now follows the procedure of Algorithm 2. Thus
we still utilized the Gaussian kernel (2.12) generating radial basis functions. It is significant
to note that we neglected the a priori weighting of no-fire instances although particularly this
type of crashes impose the biggest problems.

By pruning fire instances that are surrounded or even superimposed by no-fires, many conflicts
may be removable from the training set. As a consequence, a much more relaxed SV machine
and discriminant function may be found by subsequent model selection. A SVM with a
globally simple model e.g., a quasilinear decision boundary, then might perform poor on the
test set. However, we still have scope to develop locally complex discriminant function by
introducing weights for the remaining wrongly classified crashes. This procedure might fail
if the model is already complex (cf. last section).

The test results with regard to left over conflicts in all 5 stages are listed in Table 5.6. It
is easy to realize that there are many more remaining conflicts than with standard DDO
(cf. Table 5.2) concerning both fire and no-fire crashes. However, only certain crash modes
conflict when applying pruning. For instance, the former conflicting wall crashes wall01,
wall02, wall04 to wall10 and wall14 do not impose any conflict with pruning.

This observation implies that standard DDO is not optimal for solving wall crashes since the
SV pruning solves all but the following three wall crashes: Crash wall18 does not deploy the
3rd and 4th stage and the wall crashes wall21 and wall22 (both no-fires at approx. 16 km/h
with less stiffer front) nearly fire in every stage.

Unfortunately, the pruning method totally fails classifying angular crashes. Altogether, 8 out
of 13 angular crashes impose conflicts. The classifier found by SV pruning, however, performs
well regarding ODB crashes. Only two crashes, ODB20 and ODB21, are critical whereas the
former one does not fire in stage 4 and 5 and the latter crash does not fire in any stage
which again might result from the fact that the used automobile has a less stiffer front7.

7Note that the ODB crashes ODB18 and ODB22 only impose small conflicts. They have a low confidence
in fire decision for the last two stages
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Table 5.6: Conflicts resulting from SV pruning for training set and model selection. Every
crash has the same weight of one. From all 11 scalings per crash, only the worst
conflict of all scalings is shown whereas a critical fire F or no-fire NF is a bigger
conflict than little confidence lc.

crash key stage 1 stage 2 stage 3 stage 4 stage 5

wall03 lcF lcF
wall11 lcF lcF
wall12 lcF
wall13 lcF
wall15 lcF F
wall16 F F
wall17 F F
wall18 F F
wall19 F F F
wall21 NF NF lcNF
wall22 NF NF NF NF lcNF
angular01 lcF lcF
angular03 F F F
angular04 lcF lcF
angular05 lcF
angular10 F F lcF
angular11 F F lcF
angular12 lcF lcF F
angular13 F F F
ODB18 lcF lcF
ODB20 lcF F F
ODB21 F F F F F
ODB22 lcF
AZT01 NF NF lcNF
AZT02 NF NF lcNF
AZT03 lcNF lcNF lcNF
AZT04 NF NF NF lcNF
AZT05 NF NF NF
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Regarding the AZT crashes, the pruning method alone does not solve the no-fires sufficiently.
Only one of 5 AZT crashes (AZT03) does not impose any critical conflict but has still low
confidence in the first three stages. Although the pruning gives big favor to no-fire crashes,
it seems to be clear that most problems are too complex to be solved by such an easy model.
Recall hereto that we do not apply any class weight to the no-fire instances in advance8.

Table 5.7: Solved crashes and complexity of RBF SVM by SV pruning. Although no weights
have been applied, the classification is only slightly worse than the standard DDO
tool. The major advantage is the low number of support vectors (around 300)
which is nearly half compared to previous tests.

stage fire crashes no-fire crashes model complexity
solved total solved total C γ #SVs

1 589 616 45 77 5 0.5 306
2 588 616 47 77 5 0.5 306
3 600 616 67 77 5 0.9 277
4 558 572 104 121 5 0.9 300
5 557 572 107 121 5 0.9 286

The overall performance and model complexity are listed in Table 5.7. As already expected,
the number of solved fire and no-fire crashes is less than standard DDO. However, the number
of support vectors is reduced in every stage to nearly 50%. The SV machine created by SV
pruning performs nearly as good as the complex SVM from DDO but does not need any a
priori information e.g., the class weighting of no-fire instances.

The remaining unrecognized crashes can still be solved by introducing local complexity where
it might be necessary to do so. The low number of support vectors reflects that the pruned
SVM can further incorporate knowledge without loosing generalization performance9. The
incorporation of knowledge in terms of weights is evaluated in the next section.

5.4 Combination of SV Pruning and Crash Weighting

Combining the methods of support vector pruning and the weighting of crashes is straight-
forward. Since the training set which is returned after pruning strongly favors nearly linear
models (see Chapter 4, Section 4.1.1 for linearity of SV machines), the introduction of weights
for some crashes shall complicate the discriminant function in order to solve remaining un-
recognized crashes excluding true conflicts. Recall that we are not interested in obtaining a
classifier that solves all crashes. The search for conflicts is the main task for DDO under the
condition that all other non-conflicting crashes shall be solved.

8The tests before were performed with a class weight of wnf = 40 for every no-fire instance.
9Recall that the contrary happened in Section 5.2 due to a high number of SVs.
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Remember furthermore that the pruning method only prunes fire instances and thus gives
strong preference to the no-fire crashes. The subsequent weighting of (basically fire) crashes
that have not been correctly classified after pruning (so-called critical crashes) is the trade-off
between global simplicity of a linear classifier and the local complexity which is necessary to
solve our discrimination problem.

For the sake of simplicity, we applied a weight Ci = 4 to every instances of a conflicting crash
whereas i is the running index over the complete sample. The value for the weight was found
heuristically by merely testing different values. Higher values may force the SVM to finally
discriminant hard conflicts which did not even resolve after pruning and weighting. Smaller
values may not make any change big enough to solve conflicting crashes. Of course, there
might be crashes that completely resemble no-fire crashes. Such conflicts have to be found
and isolated by SV pruning and weighting. These remaining conflicts will then be further
analyzed by experts. Recall that this is the goal of conflict analysis.

So, let us have a look at the classification results regarding the conflicts that remain after
pruning and weighting. Table 5.8 gives an overview of the worst conflicts of all scalings. It is
remarkable to see that the biggest fraction of the remaining conflicts are low confidence (lc)
fire and no-fire decisions, respectively. Therefore, the SVM would still make correct decisions
although the confidence in them is low.

In comparison to the exclusive SV pruning, the combined method does not lead to a model
that performs well for wall crashes. The former SV pruning without weights solves all but
three wall crashes. We therefore introduced weights for them and as a consequence all
stages of these former conflicting crashes perform well. However, the introduction of weights
created 9 new critical wall crashes that have at least one misclassified stage. The reason for
this phenomenon is simple. Since we basically introduced weights for angular, only a few
wall and two ODB crashes, the non-weighted fire crashes do not get any preference. So we
basically have many more problems concerning wall crashes.

Fortunately, three out of 8 critical angular crashes could be classified as fires. Hence 5
angular crashes remain unsolved. The two former critical ODB crashes do deploy in every
stage anymore. Therefore, the ODB crash ODB21 (less stiffer front) is critical regarding the
3rd and 4th stage. The classification of AZT crashes improved much compared to exclusive
SV pruning. However, 4 out of 5 AZT crashes have been misclassified in at least one stage.

The generalization performance and model complexity of the SVM gained by the combined
method are presented in Table 5.9. Compared to the standard DDO (cf. Table 5.2), our
proposed method does not outperform the old SVM approach. However, the number of
support vectors has been reduced to more than 50% for some stages. Model parameters C
and γ are similar in all stages.

The reason why our proposed method of constructing an easy SV machine has not outper-
formed standard DDO might be the following. A training set containing all crash modes
already imposes conflicts due to the fact that there exist several modes. Training sets includ-

Christian Moewes 81



5 Evaluation

Table 5.8: Conflicts resulting from SV pruning and crash weighting in combination. Con-
flicting crashes that occurred after exclusive SV pruning have been applied to a
crash weight of 4. From all 11 scalings per crash, only the worst conflict of all
scalings is shown whereas a critical fire F or no-fire NF is a bigger conflict than
little confidence lc.

crash key stage 1 stage 2 stage 3 stage 4 stage 5

wall01 lcF lcF
wall03 F F
wall06 F lcF
wall07 lcF
wall09 lcF
wall10 lcF lcF
wall11 F F
wall12 F F lcF
wall13 lcF lcF
wall14 lcF lcF
wall15 F w,F
wall16 w,F w,F
wall17 w,NF w,NF
wall18 w,lcNF w,lcNF
wall19 w,F w,F w,F lcNF
wall20 lcF lcF F lcNF
wall21 w w lcNF lcNF
wall22 w,lcNF w,lcNF w,lcNF w,lcNF lcNF
angular02 lcF lcF
angular03 w,lcF w,lcF w
angular05 F lcF
angular06 lcF lcF F
angular07 lcF lcF
angular08 lcF lcF
angular10 w,lcF w,lcF
angular11 w,lcF w,lcF lcF F
angular12 F F w lcF
angular13 w,F w,F w
ODB21 w w w,F w,lcF w,F
AZT01 w,lcNF w,lcNF lcNF
AZT02 w,lcNF w,lcNF lcNF NF NF
AZT03 lcNF lcNF lcNF NF
AZT04 w,NF w,NF w,lcNF lcNF
AZT05 w,NF w,NF w
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Table 5.9: Solved crashes and complexity of RBF SVM by SV pruning and weighting. In
comparison to exclusive SV pruning, the combination of both methods results in
a slightly higher #SVs for the 1st and 2nd stage whereas the other stages come
up with even less support vectors. Many more no-fires and fires are correctly
classified. In stage 3, all no-fire crashes are solved correctly.

stage fire crashes no-fire crashes model complexity
solved total solved total C γ #SVs

1 601 616 73 77 4 0.8 314
2 602 616 73 77 4 0.8 313
3 607 616 77 77 5 0.6 239
4 562 572 106 121 5 0.8 259
5 561 572 108 121 5 0.9 262

ing only two or three crash modes may solve this problem. The following three sections will
evaluate our method of SV pruning combined with crash weighting again. However, we only
consider two crash modes in one training set: AZT crashes versus wall, angular and ODB
crashes, respectively.

In addition, a dimension reduction is possible since the signals of a crash mode usually differ
much compared to another ones. Thus we only consider two-dimensional problems which
enables us to plot data points, support vectors and the decision boundary.

5.4.1 AZT vs. Wall

In the present and the next two sections, we will consider crash discrimination of data
containing only two crash modes. The task is to find a model that distinguishes between
two types of crashes. Since we are interested in separating no-fire crashes from fires, we will
regard AZT crashes against wall, angular and ODB crashes, respectively.

The usage of two crash modes as input data instead of all modes has several advantages.

• Less data points have to be discriminated since the database is smaller.

• Less features are needed in order to separate fires from no-fires since the similarity of
crashes of the same mode is higher than the one of crashes of different modes.

• The resulting model is hence easier to interpret.

• If the dimensionality of the learning machine’s input space is less than 3, the result of
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the classifier can be shown as plot.

Therefore we will only study two-dimensional models in the following. Moreover, the SV
model that consists of weighted training instances (support vectors) is visualized in order to
inspect the classification results, margin of the hyperplane and the linearity of the decision
boundary, respectively.

In this section, we start with the discrimination of AZT crashes versus wall crashes. These
tests were carried out using two stable features. Again we want to compare the generalization
performances of the standard DDO tool with support vector pruning and SV pruning combined
with crash weighting. The former class weight of no-fire instances wnf is set back to one
since SV pruning and crash weighting do operate with the same setting. Furthermore we also
take a bigger fire range {t−s , . . . , ts, . . . , t+s } into consideration by setting t< = 35, t> = 20
and t− = −100, t+ = 5, respectively. So we take all fire samples 35% before and 20% after
the RTTF ts. Furthermore we substract 100 milliseconds from the left border t−s = 0.65ts
and add 5 milliseconds to the right one t+s = 1.05ts. In general one can say that we construct
a fire range containing every fire instance from the crash beginning10 at t = 0 up to around
5 milliseconds after the RTTF.

The following figures present qualitative results applying standard DDO (on the left), exclu-
sive SV pruning (in the middle) and combination of SV pruning and crash weighting (on the
right-hand side) to the discrimination of crashes at a certain stage. The overall results for all
stages regarding solved crashes are given in Table 5.10 afterward. The weights Ci = 4 have
been assigned to crashes that had not been correctly classified before. Although tests for all
5 stages have been performed, we only present results of certain stages since the remaining
figures are similar to their representatives.

The features have been normalized for plotting to the normal distribution N (0, 1). Their
original standard deviations and mean values can be found at the axes markings. The pictures
itself contain all fire points of the fire range and all no-fire points as red crosses and green
dots, respectively. Every support vector is surrounded by a rectangle. The decision boundary
is shown as black line whereas the red (blue) line indicates the margin of one on the fire (no-
fire) side. These unit margins are shown since the fire or no-fire decision rates as absolutely
sure beyond them. One finds minor confidence in this decision between the unit margins
of fire and no-fire. The intensity of the shading (cyan for fire region and yellow for no-fire
region) corresponds to the value of the discriminant function (4.1) without applying the sign
function.

Figure 5.5 shows the decision boundaries of the three different methods resulting from the
crash modes AZT and wall at the first stage. One can easily see that the margin in the
figure on the left hand side (standard DDO) is small compared to the one in middle and right
figure, respectively. The complexity of the decision boundary in the middle is low compared
to the figure on the right-hand side. Applying all three methods at the first three stages,

10Note that there does not exist any RTTF bigger than 100 milliseconds.
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Figure 5.5: AZT crashes vs. wall crashes at 1st stage.

there exists a critical fire crash in the lower left corner of the plots. This conflicting crash
is completely located on the wrong side since SV pruning could not remove it and all three
models do not recognize any fire pattern. This wall crash (wall19 at 27.0 km/h) shall only
fire at the first three stages and not surprisingly was performed with an automobile with a
less stiffer front.

Additionally, after SV pruning (middle figure) there is at least one fire crash that is partly
located on the no-fire side. By introducing weights for this crash and among others (right
figure), the decision boundary takes the conflicting crash into account as well. Note that
the figures for the first stage can be found for the second and third stage with only slight
differences.

Figure 5.6: AZT crashes vs. wall crashes at 5th stage.

The decision boundaries induced by the SV models for the 4th and 5th stage look similar.
Figure 5.6 shows the visualization of the SVM in input space for the 5th stage. Due to the
fact that the 4 crashes wall17 to wall20 become no-fires at the 4th and 5th stage, the region
of no-fire decision becomes visually bigger compared to the first three stages.

Qualitatively evaluating standard DDO (left plot of Figure 5.6), we find that the unit no-fire
margin (blue line) contains a complex bulge which results from the fact that there are many
conflicting fire support vectors geometrically far away from the decision boundary. So every
no-fire decision inside this huge bulge would lead to a diffident no-fire decision. The rather
rough discriminant functions come from high values of γ ≥ 0.8 (cf. Table 5.10) which create
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Gaussian distributions with small standard deviation σ at the location of all support vectors
since γ = 1/σ2.

Table 5.10: Solved crashes and complexity of RBF SVM for AZT vs. wall crashes. Standard
DDO already performs very well in all stages. Its model complexity, however,
is too high. SV pruning and subsequent weighting nearly performs as well as
standard DDO. Note that exclusive SV pruning leads to very good results for
no-fire crashes.

application stage fire crashes no-fire crashes model complexity
solved total solved total C γ #SVs

standard 1 209 220 65 77 4 0.5 86
pruning 1 176 220 77 77 1 0.4 116
pruning & weighting 1 205 220 77 77 4 0.5 211

standard 2 209 220 65 77 4 0.5 86
pruning 2 176 220 77 77 1 0.3 136
pruning & weighting 2 205 220 77 77 4 0.5 212

standard 3 209 220 64 77 4 0.5 85
pruning 3 176 220 77 77 1 0.4 102
pruning & weighting 3 205 220 77 77 5 0.5 208

standard 4 146 176 108 121 5 0.9 244
pruning 4 138 176 113 121 2 0.4 114
pruning & weighting 4 139 176 120 121 3 0.1 211

standard 5 143 176 108 121 5 0.8 260
pruning 5 138 176 114 121 3 0.5 102
pruning & weighting 5 138 176 115 121 1 0.1 215

Support vector pruning which is shown in the center plot of Figure 5.6 obviously smooths
the discrimination function especially on the no-fire side. The bulge disappears due to the
high linearity of the kernel (γ = 0.4, 0.5 for 4th and 5th stage, respectively). Additionally
there are whole crashes situated on the wrong side of the hyperplane which naturally impose
conflicts, SV pruning finds a much simpler decision function with less support vectors (less
than 50%) than the SVM found by standard DDO.

Assigning weights of 4 to the remaining critical crashes does not change the situation dra-
matically as it can be seen in the right plot. The margin becomes bigger and fire support
vectors situated far away from the decision boundary disappear. Only one crash, a no-fire,
profits from these changes (cf. Table 5.10) since the slope on the left side of the middle plot
disappears by weighting.

To conclude the wall versus AZT crashes, Table 5.10 summarizes the generalization perfor-
mance and values for model complexity. It becomes clear that the combination of pruning
and weighting outperforms standard DDO with respect to the no-fire crashes in all stages.
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The quality of classification for the fire crashes nearly reaches the very good results of DDO.
One can see that exclusive SV pruning outperforms DDO in the case of the no-fires whereas
subsequent weighting is more or less applied to fire crashes.

5.4.2 AZT vs. Angular

The tests for AZT against angular crashes have been carried out using two features of
Chapter 4, Table 4.1. It is important to note that another feature combination that has been
used for the crash modes AZT versus wall would lead to a perfect classification. Since we
are looking for conflicts and methods how to solve every crash but the conflicting ones, this
two-dimensional feature combination does not allow us to evaluate our algorithms.

Figure 5.7: AZT crashes vs. angular crashes at 1st stage.

Figure 5.7 shows the labeled input data and the SV model for the 1st stage which is rep-
resentative for all remaining 4 stages as well. Standard DDO already leads to a somehow
quasilinear decision function as it can be seen in the left plot. An almost linear discriminant
function in input space can be found by support vector pruning shown in the middle plot.
Here the intensity of the no-fire region increases with decreasing distance from the hyper-
plane which is easier to interpret than the DDO model. There the intensity is high only close
to the margin. The result of the combination of SV pruning and crash weighting is shown
in the right plot. The found decision functions resembles more the one obtained by DDO,
however, its intensity is much higher.

Regarding the generalization performance of all three methods for this combination of crash
modes, Table 5.11 shows the classification results and SVM parameters. Surprisingly, the
SV pruning performs very bad with respect to no-fire crashes, especially at the 4th and 5th
stage. Due to this, SV machines found by SV pruning have a very high number of SVs, even
higher than standard DDO. This is due to the fact that the decision boundary between fires
and no-fires has a very small margin as it is shown in Figure 5.7. Fortunately, the subsequent
crash weighting resolves all unrecognized crashes by assigning weights of 4 to no-fire crashes
exclusively. In comparison to standard DDO, the combined method performs very well with
similar values for C and γ at all stages. The number of support vectors, however, is higher
than with standard DDO.
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Table 5.11: Solved crashes and complexity of RBF SVM for AZT vs. angular crashes. Stan-
dard DDO only misclassified one fire and two no-fire crashes in stage 1 and 2 and
at least two no-fire crashes in the other stages. Its model complexity, however,
is too high. SV pruning and subsequent weighting nearly performs as well as
standard DDO. Note that exclusive SV pruning leads to very good results for
no-fire crashes.

application stage fire crashes no-fire crashes model complexity
solved total solved total C γ #SVs

standard 1 142 143 53 55 1 0.7 187
pruning 1 143 143 26 55 4 0.1 310
pruning & weighting 1 143 143 55 55 1 0.4 268

standard 2 142 143 53 55 1 0.7 187
pruning 2 143 143 26 55 4 0.1 310
pruning & weighting 2 143 143 55 55 1 0.4 268

standard 3 143 143 52 55 1 0.5 210
pruning 3 143 143 24 55 5 0.1 303
pruning & weighting 3 143 143 55 55 4 0.3 189

standard 4 143 143 51 55 2 0.3 219
pruning 4 143 143 5 55 3 0.1 393
pruning & weighting 4 143 143 55 55 1 0.3 311

standard 5 143 143 51 55 2 0.3 221
pruning 5 143 143 5 55 5 0.1 342
pruning & weighting 5 143 143 55 55 1 0.3 317
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5.4.3 AZT vs. ODB

To conclude the training of only two different crash modes, we are interested in separating
AZT crashes from ODB crashes. Therefore again two different features have been taken as
input variables. Before we present the results of these tests, note that ODB crashes resemble
AZT crashes at most since an automobile drives into a deformable barrier which usually
results in a late crash detection. In addition to this, this classification problem of separating
AZT crashes from ODB crashes cannot be solved with a two-dimensional input space given
the features that we consider in this thesis (cf. Chapter 4, Table 4.1).

Figure 5.8: AZT crashes vs. ODB crashes at 1st stage.

As we can see in Figure 5.8, many fire patterns are situated in the no-fire region. Without
even performing any tests, it is clear that a complete fire-crash in this area will lead to
critical conflicts. Standard DDO (left plot) creates a model that appears to be reasonable
since the best separation is somehow orthogonal to the x-axis. There exists a fire SV in the
no-fire area, however, that introduces a coherent area of a confidence lower than 1 (so-called
“island”) far away from the decision boundary. A high confidence away from the hyperplane
is demanded due to simplicity.

Even SV pruning is not able to prune this fire SV as it can be found in the center plot
of Figure 5.8. The island shifts and becomes smaller by applying pruning. The biggest
advantage opposite to DDO is the fact that less support vectors are need to construct a
discriminant function with nearly same complexity. Crash weighting of non-deployed fire and
deployed no-fire crashes just tightens the margin in the critical area. Comparing all solutions
together, it becomes clear that there does not exist any quasilinear decision function since
the no-fires are located in an area that is upper bounded to some value of the dimension in
x-direction. Again, stages 1 to 3 are similar in their obtained SV models.

The SV machines that have been found for the 4th and 5th stage resemble each other.
Figure 5.9 gives a qualitative representation of the model for the 5th stage. The standard
configuration of the DDO tool finds a model with many SVs with a fair distribution of
intensity for the fire patterns. SV pruning results in a similar model with less support vectors
and a better intensity distribution of the no-fires. The weighting of unsolved crashes leads to
an enlargement of the fire region with a high confidence although not so many fire instances
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Figure 5.9: AZT crashes vs. ODB crashes at 5th stage.

can be found there. This can be seen by the “slop over” of the fire margin of 1 toward the
decision boundary11. Thus SV pruning and crash weighting in combination do not lead to
a model that is easy to interpret. Moreover, the application of this algorithmic combination
creates an island solution which is not accepted from the physical behavior of the system.
This area of low confidence in a no-fire decision can be found in the lower center of the
middle and right plot.

Table 5.12 substantiates these statements quantitatively once more. Applying only SV prun-
ing nearly recognizes all no-fire crashes at all stages (just one missing crash at the last three
stages). Both methods, SV pruning and weighting in combination, only lead to a better
performance for the recognition of fire crashes at stages 1 and 2, respectively whereas this
quality of classification is even worse than without weighting for the stages 3 to 5.

5.5 Results for Hybrid Approach to Time Series

Classification

In the last section of this chapter, we want to evaluate an approach toward time series
analysis as it was introduced in Chapter 4, Section 4.3.3. Therefore we map every time
series with a possibly variable length to a vector of fixed length (the Fisher score) by a
parametrized probabilistic model. We used the GMM implementation of Baggenstoss [8] in
order to obtain such a model. The Fisher scores were then discriminated by a support vector
machine applying a Gaussian RBF kernel.

The tests of this hybrid approach have had a much longer runtime than all other tests that
have been performed. This is due to the computation of the fisher scores which have a
complexity of O(l ·m · w) where l is the number of temporal sequences. Since we used the

11Note the difference of the mean and standard deviation of the normalized feature X Symmetry between
the 1st and 5th stage. This is due to the temporal shift of the fire range between these stages. If a crash
C = (k, T,X , T , ω) has to deploy the restraint system in all stages S = {1, . . . , 5}, then t1 > t5 whereas
T = {t1, . . . , t5} is the set of RTTFs.
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Table 5.12: Solved crashes and complexity of RBF SVM for AZT vs. ODB crashes. Standard
DDO has problems recognizing some no-fire crashes. By only applying SV prun-
ing, one obtains very good results for no-fire crashes. A subsequent weighting of
unrecognized crashes impairs the recognition of fire crashes at stages 3 to 5.

application stage fire crashes no-fire crashes model complexity
solved total solved total C γ #SVs

standard 1 239 253 49 55 5 0.8 123
pruning 1 227 253 55 55 5 0.8 113
pruning & weighting 1 236 253 51 55 5 0.8 157

standard 2 239 253 49 55 5 0.8 123
pruning 2 227 253 55 55 5 0.8 113
pruning & weighting 2 236 253 51 55 5 0.8 157

standard 3 239 253 49 55 5 0.8 123
pruning 3 231 253 54 55 4 0.8 105
pruning & weighting 3 216 253 55 55 4 0.3 243

standard 4 239 253 48 55 2 0.4 143
pruning 4 229 253 54 55 5 0.6 60
pruning & weighting 4 222 253 55 55 4 0.2 194

standard 5 237 253 49 55 3 0.2 143
pruning 5 229 253 54 55 5 0.7 60
pruning & weighting 5 221 253 55 55 3 0.2 185
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sliding window technique (cf. Chapter 2, Section 2.4.1), every crash is split into many small
time series. This and the discrimination for the SVM in the very high dimensional feature
space increase the runtime drastically.

Utilizing the gradient space of the Fisher scores as vector space that is based on a GMM, many
more parameters come into play which complicate the search for an appropriate model. First
of all, the number of Gaussian distributions (modes) and an initialization of the multivariate
width of Gaussians has to be chosen. Second, we have to decide if only fire or only no-fire
instances are taken for the training of the GMM. This decision is based on the fact that we
are interested in the a posteriori probability pi(x) if a given instance x is a fire (or no-fire)
for every Gaussian fi, i ∈ {1, . . . ,m}. It should be clear that the performance of the GMM
also depends on this choice.

In addition to the GMM settings, the computation of the Fisher scores depends on the
window length w and the window lag ∆w. The latter parameter has been set to ∆w = 1
for simplicity. Furthermore, the parameter that is used to derive probabilistic model has to
be specified (cf. Equation (2.30)). This can be any parameter of the model like mean,
standard deviation, covariance, etc. For our tests we set the parameter θ to the mean value
µ = (µ1, . . . , µm) (cf. Chapter 4, Section 4.3.3).

Selected results of this hybrid approach are listed in Table 5.13. The same set of 5 features
as in Sections 5.1.2 have been considered as input variables. We only concentrated on the
1st stage since its fire times are the earliest compared to the other stages. Thus stage 1 is
usually the hardest problem to discriminate. Moreover, we just performed tests with one and
two Gaussian distributions (m = 1, 2) since a higher number of modes would increase the
runtime enormously. Regarding the window length w, tests with w = 6, . . . , 10 lead much
better results than w = 1, . . . , 5. The latter results are omitted since they did not show any
reasonable performance.

Unfortunately, the GMM and the Fisher kernel with basic settings do not lead to good
solutions concerning the fire crashes. Note that a small window length of w ≤ 5 does so,
however, with extremely poor performance regarding the no-fire crashes. The main problem
is the GMM which has to learn a generative model for the data. This learning process
is an ill-posed problem that is approximated by a very instable algorithm (cf. Chapter 2,
Section 2.4.3). A probabilistic model that generalizes the data well and consequently assigns
reasonable a posteriori probabilities to an instance will for sure improve the performance of
the SVM based on the Fisher kernel.
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Table 5.13: Solved crashes at 1st stage by applying GMM and subsequent RBF SVM. All
tests have been performed on an Intel Pentium 4 CPU with 3.6 GHz and 1 GB
RAM. The runtime of every test is given in the last column.

GMM settings Fisher scores fire crashes no-fire crashes runtime
#modes instances w parameter solved total solved total [min]

1 no-fires 6 mean 285 616 70 77 19.0
1 no-fires 7 mean 251 616 73 77 9.8
1 no-fires 8 mean 254 616 70 77 3.7
1 no-fires 9 mean 220 616 70 77 1.9
1 no-fires 10 mean 245 616 67 77 1.0

1 fires 6 mean 419 616 66 77 3.1
1 fires 7 mean 355 616 68 77 2.9
1 fires 8 mean 372 616 67 77 0.9
1 fires 9 mean 353 616 70 77 1.2
1 fires 10 mean 196 616 75 77 0.9

2 no-fires 6 mean 293 616 71 77 17.8
2 no-fires 7 mean 275 616 77 77 18.1
2 no-fires 8 mean 161 616 22 77 4.4
2 no-fires 9 mean 258 616 71 77 3.0
2 no-fires 10 mean 245 616 67 77 3.0

2 fires 6 mean 303 616 75 77 1.7
2 fires 7 mean 240 616 76 77 1.8
2 fires 8 mean 199 616 77 77 1.9
2 fires 9 mean 180 616 77 77 2.0
2 fires 10 mean 170 616 77 77 2.0
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6 Conclusions and Future Work

In this final chapter of the thesis, the main lessons that were learned based on the work
described before are summarized. Open issues and possible improvements for future research
are pointed out as well.

6.1 Discussion of Contribution

The present thesis has focused on designing methods for the discrimination of vehicle crash
events by the support vector method. On the one hand, the proposed methods can be
utilized before the actual calibration process in order to search for conflicts e.g., by using
the combination of SV pruning and crash weighting. On the other hand, the suggested
SV methods shall be an approach to a predictive model for the discrimination of fires and
no-fires.

The predictions are based on different realizations of SV machines. An already established
system called DDO which is currently used at Siemens VDO has been extended in multiple
ways to especially improve its performance for conflict analysis. The implemented contribu-
tions of this thesis have been motivated and explained thoroughly. A broad literature research
preceded the design decisions.

The algorithm for conflict analysis named SV pruning that is a first step toward an inter-
pretable model with good generalization performance is based on two steps. The first step
is user-independent and works as follows. All no-fires are considered for training. The initial
set of fires is pruned by linear SV machines which only tolerate fire patterns that are easy
to classify. A subsequent SVM using a kernel that generates Gaussian radial basis functions
tries to discriminate the fires from the no-fires. The second stage is optional and requires
user information concerning the priority of single crashes. If a crash has not been recognized
correctly by SV pruning, then the user can define a higher weight for this crash in order to
force the learning machine to classify it correctly. After incorporating the knowledge about
priorities, SV pruning is run again with weighted crashes. A subsequent Gaussian RBF SVM
is constructed in the training step again.

The experimental approach toward time series analysis on the basis of support vector machines
has been implemented by a hybrid model that is motivated by [19]. It consists of a Gaussian
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mixture model and a support vector machine. After training the GMM, this probabilistic
model is used to explain the data by Gaussian mixtures. By transforming the temporal
sequences in input space into a gradient spaces based on a chosen parameter of the GMM,
the sequences are represented by a new feature vector, the Fisher score. The discriminative
power of the SV method is then used to classify the Fisher scores.

The presented ideas have been evaluated by means of a real-world crash database. The results
concerning the two-stage approach for gaining a quasilinear model show very clearly that SV
pruning and crash weighting almost always lead to a model that generalizes as good as the
standard SVM implemented in DDO. In comparison to standard DDO, its advantages are the
much lower complexity of the obtained model and the high smoothness of the discriminant
function.

The evaluation of the hybrid approach regarding the generalization performance is poor
compared to both methods DDO and the combination of SV pruning and crash weighting.
Nevertheless it should be stressed out that due to shortage of time not enough parameter
tests have been performed to gain a reasonable GMM. As a conclusion, we can say that
a more sophisticated approach different toward time series analysis with a better similarity
measure than the Fisher scores might enable a well performing tool to discriminate fire from
no-fire events.

6.2 Future Work

In the field of crash discrimination and conflict analysis there exist many open issues that
persist to be addressed. In the following we take a short look at selected problems and
possible extensions that have not been considered in the present thesis. These ideas shall
indicate to challenging ways of both future research and performance improvement.

First of all, the combined method of SV pruning and crash weighting has to be applied
to different real-world crash databases in order to validate the method for the calibration
process. Since Siemens VDO does have many customers all over the world, this broader
evaluation should not be very difficult.

Second, the crash weighting that is applied by the user due to a wrong classification may be
performed automatically. Simply increase the weights of these crashes which have been mis-
classified. This does not prevent the user to apply different weights to other crashes or change
the automatically applied weights. In point of fact, it is a straightforward simplification to
automate the search for conflicts.

So far we applied the same value of weight to every instance of a crash. Since an early fire
crash discrimination is preferred, one can also implement the following approach to favor
these crash instances that occurred in an earlier point of time. The weight of every instance
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may be determined by a monotonic decreasing function that starts with an initial weight of
e.g., 4. Asymptotically the weights applied to the fire instances become one at either the
end of the crash or at t = ts whereas the RTTF is given by ts. Thus the SVM will consider
an earlier deployment of fire crashes automatically by incorporating decreasing weights.

As we already outlined before, the distance heuristic based on the Gaussian kernel to classify
every unseen pattern into one specific type crash is not the best. Since many instances
from different crashes resemble each other, a better heuristic has to be found. Having a
misclassified crash, for conflict analysis it is important to know details about this decision e.g.,
the type of crash that has been assigned to the unseen crash. Therefore learning classifiers
for different classes might be a key to that problem. The one-against-one approach results in
too many classifiers. Considering other approaches likes one-against-all may lead to a better
understanding of the conflicts.

Although the SV pruning is already a striking mean against island solutions in the training set
selection, the occurrence of these solutions cannot always be prevented. An approach toward
a further improvement might be to run sequentially three different filter methods. First,
remove all fire patterns that are closer than a certain value to a no-fire pattern. Second,
separate every fire crash locally from all no-fire crashes by linear SV machines. Finally, take
the rest of instances for the SV pruning which globally separates all fires from all no-fires.

Another open issue is the design decision that we want to solve a binary classification problem.
For conflict analysis, this only allows us to take RBF kernels since they preserve the Euclidean
distances between the patterns. Modeling our problem with multiple classes, we can apply
any Mercer kernel as similarity measure that may result in a learning machine with better
performance. Especially kernels for time series analysis as discussed in [29, 36] have to be
considered since the assumption of a random distribution does not hold for instances of one
crash.

Regarding DDO and conflict analysis, we already state out that the discrimination with only
two crash modes as input has many advantages over the complex classification with all 4
crash modes. It is straightforward to extend DDO in order to combine all pairs of crash
modes. This would reduce the time for conflict analysis and would give visual insights into
the SVM by two-dimensional plots.

The design of an appropriate kernel for our highly unbalanced problem remains an open
problem as well. If one could define a Mercer kernel e.g., that measures the similarity
between a no-fire trajectory in time with a fire instance, then we could include a priori
knowledge about the problem directly by applying such a special kernel function. Hence the
generalization performance of this SVM should be better than the presented machines.

Concerning the hybrid approach of GMM and SVM, we already noted that several improve-
ments have to be done to obtain a model with a high generalization performance. The
learning step of probabilistic distribution of the fire or no-fire data might be even performed
by the SV method itself [36]. Using a probabilistic model to explain the data, one has to
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determine the number of Gaussian distributions for the GMM. This can be done e.g., by
applying clustering methods several times with a different number of clusters.

The ability of the SV model’s interpretation was not touched in this thesis. Discriminant
functions in d-dimensional input space with d > 2 cannot be shown in a plot. Therefore
dimension reduction methods e.g., self-organizing maps [21], that preserve the neighborhood
of instances might be a key to this problem.

6.3 Conclusions

The primary subject of the present work has been the application of support vector machines
to discriminate vehicle crash events. We have motivated the importance of vehicle safety and
the utilization of the SVM as learning algorithm to tackle the problem of crash discrimination
due to its flexibility and extensibility. We have extended the existing SVM of the tool
DDO in order to construct quasilinear and simple SV models which still ensure a good
generalization performance. The selection of fire instances for the learning step has become
more sophisticated by SV pruning. One may enforce the classification of unrecognized crashes
by crash weighting which is directly incorporated into the SV method. We have shown that
the combination of SV pruning and crash weighting is a powerful tool for the calibration since
it can be used to search for conflicts in the crash database.

With regard to time series analysis, we have proposed the application of a hybrid approach
combining the generative power of a parametrized probabilistic model like a GMM and the
discriminative power of a SVM. The presented idea has not brought any further improvement
or insight into the learning process. However, the analysis of time series instead of single
multivariate patterns should be still considered as a way of modeling the problem.

The main message of this thesis is that the SV method represents a powerful and flexible tool
to incorporate a priori knowledge in order to search for conflicts and to solve the classification
problem of fire and no-fire events effectively. We have demonstrated that the proposed
methods can be successfully applied to our problem of crash discrimination in order to achieve
both interpretable solutions and low model complexity.
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[29] Stefan Rüping. SVM kernels for time series analysis. In Ralf Klinkenberg, Stefan
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