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Abstract.
Machine learning techniques typically result from the needfor intelligent solu-

tions to practical tasks. Nowadays, large data volumes are usually involved and ma-
chine learning techniques are focused on particular tasks like classification, regres-
sion or clustering. For the latter task, clustering, quite afew algorithms have been
proposed, typically tailored to particular application domains and their data sets.
Recently, georeferenced (orspatial) data sets keep emerging in lots of disciplines.
Therefore, algorithms which are able to handle these spatial data sets should be de-
veloped. This article shortly describes a particular application area, precision agri-
culture, and the spatial data sets which exist there. A particular task from this area,
management zone delineation, is outlined and existing spatial clustering algorithms
are evaluated for this task. Based on the experiences with those algorithms and a
few requirements, HACC-SPATIAL is developed. The algorithm is based on hier-
archical agglomerative clustering with a spatial constraint and it is demonstrated to
produce practically advantageous results on precision agriculture data sets.
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1. Motivation and Application Area

Figure 1 shows a part of the data sets which are of interest here. Data such as these
are nowadays collected regularly. They are obtained in precision agriculture operations,
which would best be described as a data-driven and GPS-basedapproach to agriculture.
A number of ground-based sensors, aerial imagery and other variables are regularly col-
lected and, due to (differential) GPS, georeferenced at a high spatial resolution up to
a few centimeters. This article deals with these data sets and a specific task for spatial
clustering.

1.1. Problem Description

Given data sets from precision agriculture, the classical question ofmanagement zone
delineationshould be answered: are there parts or zones on the field whichcan be treated
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similarly, for example during fertilization operations? In machine learning, this is treated
as a clustering task: given a data set, which of the points in the data set are similar and
thus fall into one cluster? However, since the data in precision agriculture are of spatial
nature, any clustering algorithm to be used must account forthis spatial nature.

In this article, a real precision agriculture data set will be used, consisting of
1079 spatial data records for the following variables: pH value, potassium (K) content,
magnesium (Mg) content, phosphorus (P) content, apparent electrical soil conductivity
(EC25) and yield. These data records result from precision agriculture operations and are
preprocessed to a regular grid – each grid cell is represented by a data vector contain-
ing the previously mentioned variable values at this particular cell. The data can also be
thought of as having the above variable layers.

Personal experience shows that currently for management zone delineation only the
EC25 variable is used. It is clearly stated that it would indeed be worthwile to use further
available data variables, but that there is a lack of readilyusable methods tailored to this
particular task. Therefore, this article aims to develop a spatial clustering algorithm fit
for these particular data sets.

2. Task and Algorithm Requirements

A definition of a spatial cluster with regard to geographicalinformation systems is pro-
vided in [9]:

A spatial cluster might then be defined as an excess of [. . . ] values (for field-based
data, such as a grouping of excessively high concentrationsof cadmium in soils)
in geographic space. [. . . ] For now, it is useful to think of a “cluster” as a spatial
pattern that differs in important respects from the geographic variation expected in
the absence of the spatial processes that are being investigated.

With the aforementioned data sets at hand, a few further requirements for the outcome
of any spatial clustering algorithm for management zone delineation are specified in the
following.

exploratory nature The process of management zone delineation is typically user-
dependent and requires user intervention. Therefore, a developed clustering algo-
rithm is not supposed to result in anoptimaloutcome where the algorithm perfor-
mance can be measured and confirmed. It is rather supposed to be supportive in
providing the user with suggestions for the zone delineation.

understandability End users of a geographical information system are much more
likely to apply an algorithm if it can be easily understood. Therefore, an algorithm
which is unlike a “black-box” algorithm is suggested.

spatial contiguity It would certainly be desirable to have spatially contigousmanage-
ment zones. It can, however, not be ensured due to the heterogeneity of a field.
Therefore, this contiguity should be seen as a soft constraint which may be violated
up to a certain degree.

spatial autocorrelation It may safely be assumed that the available data sets are spa-
tially autocorrelated: data records which are close to eachother are very likely to
have similar variable values in contrast to data records which are rather distant



from each other. A spatial clustering algorithm should exploit this data property
accordingly.

3. Literature Review on Spatial Clustering

Given the data set presented in the preceding section, the task is to establish an algorithm
which is able to delineate the field into spatially (mostly) contiguous clusters, so-called
management zones. From a machine learning point of view, thetask is the following:
given a set of georeferenced data records consisting of a certain number of variables,
find a spatial tessellation of these data records which is appropriate for management zone
delineation. Since it is as of now unclear which of the available variables contribute to
the physical and biological underpinnings of management zones [11], the above broad
task should be narrowed to the following: develop an algorithm for the above type of data
sets which returns a spatially (mostly) contiguous tessellation and which can be easily
parameterized by a human expert.

In precision agriculture, there are a number of approaches using standard clustering
algorithms such as fuzzy c-means clustering [12,13,15]. However, these rely solely on
the data records’ variables and totally neglect the spatialstructure of the data records.
This results in zones which are non-contiguous and spread over the whole field, as well
as small islands of outliers and insignificant records whichmust be smoothed out manu-
ally after the clustering. A similar approach is undertakenby fuzzy classification of the
data records, which exhibits the same problems [14]. In addition, there is no clear guid-
ance available as to which input variables enable a successful management zone delin-
eation [4,17]. It seems, however, clear that management zones must rely on more than
just yield data [11].

In the area of computer science, there are, to the best of the authors’ knowledge, no
clustering algorithms which would allow tackling the abovetask on the given type of data
sets. Density-based algorithms like DBSCAN [5], CLIQUE [1]or STING [22] usually
rely on a non-uniform distribution of the data records (density differences) to find clus-
ters. With our data sets, the records are spatially uniformly distributed on a grid, which
renders the aforementioned algorithms useless. An extension to include geographic in-
formation, as presented in MOSAIC [3], would be appropriate, but MOSAIC does not
distinguish between geographic space and feature space. Algorithms like SKATER [2]
and REDCAP [7] are different in that they explicitly incorporate spatial contiguity con-
straints into the clustering process. However, these algorithms may fail to report adja-
cent clusters correctly (SKATER) or are too strict in terms of management zone conti-
guity (REDCAP). In addition, they both rely on the fact that data records are spatially
non-uniformly distributed, which is not the case here. Thislast assumption is also used
by ICEAGE [8], which is therefore not applicable either. CLARANS [16] is a further
algorithm designed for clustering spatial data sets but is based on the assumption that the
structure to be discovered is hidden exclusively in the spatial part of the data, which is not
the case here. Finally, AMOEBA [6] works on two-dimensionalspatial data by building
a hierarchy of spatial clusters using a Delaunay triangulation, but lacks the extension to
non-spatial variables and also assumes that the 2D points are non-uniformly distributed
in space.



4. Recommendations towards a Novel Approach

One of the more common approaches to spatial clustering is a hierarchical agglomerative
one: start with each point in a single cluster and subsequently merge clusters according
to some criterion or constraint. Further research into constraints-based clustering [20]
reveals that it may in principle be applied here. The author of [20] explicitly describes
the “spatial contiguity” constraint for spatial data as a type of global clustering con-
straint using neighborhood information, albeit for image segmentation. The constraints
are presented as “hard” or “soft”, meaning that the final clustering outcome “must” or
“can” consider these constraints. The task encountered in this article, namely generating
mostly contiguousclusters, could therefore be tackled by using a soft spatialcontigu-
ity constraint. An additional feature of constrained clustering algorithms is the existence
of “must-link” and “cannot-link” pairwise constraints fordata records. Although an al-
gorithm can usually be constructed this way or the other, it seems more appropriate to
model the spatial contiguity requirement as a “cannot-link” (soft) constraint for spatially
non-adjacent data records or clusters. In addition, the work of [21] encounters a similar
agricultural problem to the one in this article, but the focus is slightly shifted to yield pre-
diction on a county scale with low-resolution data, rather than using high-resolution data
for management zone delineation. Since the focus in this work is more on exploratory
data mining in an unsupervised setup we postpone the performance question.

Additionally, hierarchical agglomerative clustering seems like a rather natural ap-
proach since the solution ultimately has to be presented to domain experts who typically
prefer easy-to-understand solutions over black-box models. Therefore, our focus will be
on developing a hierarchical agglomerative algorithm for zone delineation which takes
the special properties of the data sets into account. Our data sets are different from the
ones in existing work since the data records are located on a uniformly spaced hexagonal
grid and exhibit spatial autocorrelation. This autocorrelation will be used explicitly in
our approach.

5. HACC-spatial

This section presents an extended and refined version of the hierarchical, divide-and-
conquer approach to delineating spatially mostly contiguous management zones based
on precision agriculture data presented in [18,19]. Our approach can best be described
ashierarchical agglomerative clustering with a spatial contiguity constraint(HACC-
SPATIAL) and an additional (optional) initialization step which exploits the spatial auto-
correlation in the data. It consists of two phases, in a divide-and-conquer manner. First,
the field is tessellated into a fixed number of (spatial) clusters. Second, these clusters
are merged iteratively, using a similarity measure and adhering to a spatial contiguity
constraint, which shifts from being a hard constraint to a soft constraint throughout the
algorithm. The algorithm is given in pseudo-code in Algorithm 1 (syntax close to R).

Phase 1 of HACC-SPATIAL is intended to create small initial clusters or single ob-
jects for the second phase of the algorithm. For hierarchical agglomerative clustering on
single objects no further action needs to be taken. However,due to spatial autocorrela-
tion, spatially neighboring data records are likely to be very similar in their variables.
Therefore, by tessellating the field into a fixed number of spatial clustersn ≤ N , the



Algorithm 1. HACC-SPATIAL

# input:
# V . . . set ofi georeferenced data vectors
# k – tessellation resolution,k ≤ i

# cp – contiguity constraint parameter
5: # output: a dendrogram of the hierarchical clustering

# split phase, runk-means clustering on spatial locations of data vectors
C← k-means(V , k)
return spatial clusteringC

10:

# merging phase, iteratively merge clusters according to cp
spatialconstraint← “hard”
repeat

# determine and store cluster distances
15: for each spatially adjacent cluster pair (ci,cj) ∈ C do

dista[i,j] ← dist(ci,cj)
end for
for each spatially non-adjacent cluster pair (ci,cj) ∈ C do

dista[i,j] ← dist(ci,cj)
20: end for

# determine minimum/median distances and contiguity
mindista← minimum(dista), meddista← median(dista)
mindista← minimum(dista), meddista← median(dista)

contiguity←−meddist
a

meddista
25: # switch from hard to soft constraint when cp is reached

if contiguity≥ cp and spatialconstraint = “hard”then
spatialconstraint← “soft”

end if
if spatialconstraint == “hard”then

30: clusterpair← which(dista == mindista, arr.ind=TRUE)
else

if mindista ≤mindista then
clusterpair← which(dista == mindista, arr.ind=TRUE)

else
35: clusterpair← which(dista == mindista, arr.ind=TRUE)

end if
end if
i ← clusterpair[1], j← clusterpair[2]
C ← C \ (ci, cj) # remove most similar cluster pair

40: C ← C ∪ (ci ∪ cj) # add newly merged cluster
until number of clusters= 1
return dendrogram of management zonesC



clusters are still very likely to contain similar (adjacent) data records while some of the
ensuing computational effort of the merging step can be saved. With the above prereq-
uisites, the simplest tessellation approach fulfilling therequirements is to perform ak-
means clustering on the data records’ spatial coordinates.This explicitly assumes that,
due to spatial autocorrelation, the resulting spatial clusters contain similar data records.
This phase may be omitted, such that the second phase would then begin with each point
in a single cluster.

Phase 2 of HACC-SPATIAL starts either with the small contiguous clusters or from
single data records as clusters. The idea is to merge these clusters consecutively into
larger clusters. In addition to the standard similarity or distance measure, a spatial con-
straint is taken into account. Since the final result of the clustering is assumed to be a set
of spatially mostly contiguous clusters, only those clusters should be merged which are
a) similar (with regard to their variables’ values) and b) spatial neighbors (adjacent).

In classical hierarchical clustering, the standard measures for cluster similarity are
single linkage, complete linkage and average linkage [10].However, when considering
the spatial data encountered here, these three criteria merit some explanation.Single link-
agedetermines cluster similarity based on the smallest distance between objects from
adjacent clusters. Due to spatial autocorrelation, it is likely that there are always some
points at the borders of the clusters which are very similar,for each neighbor. Therefore,
single linkage will not provide us with a good measure for which neighbor to choose.
Complete linkagedetermines the similarity of neighboring clusters based onthe distance
of those objects which are farthest away from each other. Since we are considering spa-
tially adjacent clusters, this would lead to very dissimilar clusters being merged. Due to
spatial autocorrelation, these objects would also be spatially rather far away from each
other, which leads to a chaining effect and less meaningful clusters.Average linkage
determines the similarity of adjacent clusters based on theaverage of the (Euclidean
or other) distances between all objects in the clusters. A combination of the aforemen-
tioned arguments for single and complete linkage may be applied here: points in adjacent
clusters which are spatially close/far apart are likely to also be very similar/dissimilar.
Therefore, an appropriate distance for adjacent clusters may be determined byaverage
group linkage: we compute an average vector for each cluster and determinethe distance
between these vectors.

It is not required that one zone is strictly contiguous, i.e.consists of just one spatially
contiguous area on the field. It is a valid result if one zone comprises those data records
which are similar but is made up of two or more larger areas on the field. This“mostly
contiguous”description should be seen as a soft constraint in the final merging steps.
To prevent the algorithm from producing too many scattered zones, we propose to set
it as a hard constraint during the beginning of the merging phase. As long as adjacent
clusters are similar enough, these are merged. If this is notthe case, clusters which are
not direct neighbors of each other may be merged if they are similar enough. The spatial
constraint is changed from a hard to a soft constraint as soonas the contiguity ratio (see
Algorithm 1) is exceeded. In the results for Figure 2, the algorithm performs well with
the hard constraint in the beginning and would switch to a soft constraint only after the
bottom plot, which has 28 clusters left, with the contiguitythreshold set to−2.
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Figure 1. Four chosen variables for which the management zone delineation is applied: pH value, P, Mg, K
concentration

6. Results and Discussion

We now demonstrate the algorithm on multi-variate data and start with a correlated subset
of the original data set: we choose the four soil sampling variables (pH-value, P, K, Mg
content). From the four plots in Figure 1 it can be seen that a certain spatial structure is
emergent, with four to six visible areas, separated by another cross-shaped area in the
middle. This structure is the one we would like HACC-SPATIAL to discover.

The data set has 1079 spatial data records. As mentioned in the algorithm descrip-
tion, a hierarchical agglomerative clustering procedure may start with each of the data
records forming one cluster. However, due to spatial autocorrelation, spatially adjacent
data records are likely to be similar and are therefore grouped by using ak-means clus-
tering on the spatial part only. This is depicted in the top left figure of Figure 2: we
choosek to be 350, such that on average three neighboring data records are in one cluster
initially. The algorithm then proceeds to consecutively merge adjacent, similar clusters.
This is depicted in Figure 2, top right and bottom left plot, with 250 and 150 clusters
left, respectively. The final plot in Figure 2 shows the outcome with 28 clusters left. We
can roughly see six zones. Those at the borders are, of course, not (yet) zones in the
sense of the algorithm, but they are easily visually distinguishable. For an exploratory
data mining task, this result is what the algorithm is supposed to deliver.

Upon further examination of the resulting six zones, it turns out that these are ac-
tually just three zones. Comparing the clustering result with the original data set yields
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Figure 2. Clustering on the four variables from Figure 1, beginning ofclustering (350 clusters), after 100/200
merging steps, with 28 clusters left (left to right, top to bottom)

the following: the largest zone which covers roughly 80% of the field could be described
with low pH, low P, medium/low Mg, low K. The border zones on the top left, the left
and the bottom left of the field can be described withhigh pH, high P, high Mg, high K.
The small zone at the right field border and the one extending from the left border mostly
horizontally into the middle would behigh pH, high P, low Mg, high K. For practical
purposes of basic fertilization this simple characterization of a field’s principal zones is
very convenient.

Setting the parameterk for the k-means tessellation depends on the data set. For
rather homogeneous fields, this can be set to a lower value such as N

10
, whereN is the

number of available data records. For rather heterogeneousdata sets such as the one en-
countered here, we may set it to as high asN

3
, thereby combining roughly three adjacent

data records into one initial cluster. If the numberk of initial clusters is set toN , we
obtain a setting which may be used for data where no spatial autocorrelation exists.

Setting the contiguity ratio threshold is rather straightforward: a high value (in the
implementation here:≥ −1) leads to a later switch from a hard to a soft constraint –
therefore, the spatial contiguity is higher. A value smaller than, but closer to−2 further
weakens this hard constraint. A value≤ −3 favors the merging of non-adjacent clusters
early in the algorithm, probably resulting in rather scattered zones. For other data sets,
this parameter setting may vary, and depending on the implementation, the scale may
change. Theaverage-linkagesimilarity computation using Euclidean distance may be



replaced by a different distance measure. For higher numbers of variables, the Cosine
distance measure may be employed.

7. Summary and Future Work

This article presented a hierarchical agglomerative clustering approach with a spatial
constraint for the task of management zone delineation in precision agriculture. Based
on the specifics of the data sets from precision agriculture,namely the uniform spatial
distribution of the data records on a hexagonal grid and the existence of spatial auto-
correlation, we established and recognized the shortcomings (or the lack) of existing
approaches. Henceforth, we specified the requirements of a novel approach: the spatial
contiguity of the resulting zones and the explicit assumption of spatial autocorrelation.

This research lead to a two-phase divide-and-conquer approach. In the first phase
we tessellated the field usingk-means on the data records’ 2D coordinates. In the sec-
ond phase, we iteratively merged those spatially adjacent clusters that are similar. This
was done in two sub-phases: in the first sub-phase, the spatial contiguity was a hard con-
straint, meaning that only adjacent clusters may be merged.In the second sub-phase, this
was relaxed to a soft constraint. Switching from the hard to the soft constraint can be
user-influenced by a contiguity factorcf . Proceeding like this provided us with a hier-
archical structure which can then be examined by a human expert for guidance on the
management zone delineation. Our focus was on providing an exploratory and easy-to-
understand approach rather than a fixed, black-box solution. Our approach worked suc-
cessfully for spatially autocorrelated precision agriculture data sets. The parameter set-
ting for k (initial tessellation) was explained. An additional parametercf was suggested
for further analysis on the spatial contiguity of the resulting clusters.

Once the clustering algorithm finishes, a certain clustering should usually be exam-
ined further. The clusters may easily be examined using frequent itemset mining. Nu-
merical variables can be converted to a three- or five-value categorical scale and the re-
sulting frequent sets could be generated as we did manually for the bottom plot of Fig-
ure 2. Although theaverage linkagesimilarity calculation turns out to work rather well
in practice, it may be further researched whether differentlinkage criteria in combination
with other similarity measures could be more appropriate. Adrawback of our work is the
lack of reference data sets from precision agriculture and similar domains in conjunction
with a similar task. We are currently investigating the possibility of making our data sets
publicly available for this purpose.

This work has been researched and implemented during a research stay in the
database group of Kjetil Nørvåg and Heri Ramampiaro at NTNU Trondheim, IDI,
August–October 2010.
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