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Abstract.

Machine learning techniques typically result from the nédntelligent solu-
tions to practical tasks. Nowadays, large data volumesarally involved and ma-
chine learning techniques are focused on particular téskslassification, regres-
sion or clustering. For the latter task, clustering, quifeva algorithms have been
proposed, typically tailored to particular applicationntlins and their data sets.
Recently, georeferenced (spatia) data sets keep emerging in lots of disciplines.
Therefore, algorithms which are able to handle these dpitia sets should be de-
veloped. This article shortly describes a particular ajgpibn area, precision agri-
culture, and the spatial data sets which exist there. Aqudati task from this area,
management zone delineation, is outlined and existingadpaistering algorithms
are evaluated for this task. Based on the experiences wigethlgorithms and a
few requirements, HACGSPATIAL is developed. The algorithm is based on hier-
archical agglomerative clustering with a spatial constrand it is demonstrated to
produce practically advantageous results on precisioioudtyure data sets.
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1. Motivation and Application Area

Figure 1 shows a part of the data sets which are of interest lata such as these
are nowadays collected regularly. They are obtained inigicecagriculture operations,
which would best be described as a data-driven and GPS-bagpedach to agriculture.
A number of ground-based sensors, aerial imagery and o#niables are regularly col-
lected and, due to (differential) GPS, georeferenced apgh spatial resolution up to
a few centimeters. This article deals with these data setsaapecific task for spatial
clustering.

1.1. Problem Description

Given data sets from precision agriculture, the classioalstjon ofmanagement zone
delineationshould be answered: are there parts or zones on the field wéuiche treated
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similarly, for example during fertilization operationsPrhachine learning, this is treated
as a clustering task: given a data set, which of the pointsdrdata set are similar and
thus fall into one cluster? However, since the data in pi@eiagriculture are of spatial
nature, any clustering algorithm to be used must accourthfespatial nature.

In this article, a real precision agriculture data set will bsed, consisting of
1079 spatial data records for the following variables: pHigapotassium (K) content,
magnesium (Mg) content, phosphorus (P) content, appaleettieal soil conductivity
(EC25) and yield. These data records result from precigioic@lture operations and are
preprocessed to a regular grid — each grid cell is repreddnte data vector contain-
ing the previously mentioned variable values at this palgiccell. The data can also be
thought of as having the above variable layers.

Personal experience shows that currently for managemastdalineation only the
EC25 variable is used. Itis clearly stated that it would ealbe worthwile to use further
available data variables, but that there is a lack of readible methods tailored to this
particular task. Therefore, this article aims to developatial clustering algorithm fit
for these particular data sets.

2. Task and Algorithm Requirements

A definition of a spatial cluster with regard to geographio&rmation systems is pro-
vided in [9]:

A spatial cluster might then be defined as an excess of [. lupgdfor field-based
data, such as a grouping of excessively high concentratbieadmium in soils)
in geographic space. [...] For now, it is useful to think ofduster” as a spatial
pattern that differs in important respects from the geolgiapariation expected in
the absence of the spatial processes that are being iratestig

With the aforementioned data sets at hand, a few furtherinements for the outcome
of any spatial clustering algorithm for management zonadation are specified in the
following.

exploratory nature The process of management zone delineation is typically- use
dependent and requires user intervention. Therefore, @lajged clustering algo-
rithm is not supposed to result in aptimaloutcome where the algorithm perfor-
mance can be measured and confirmed. It is rather supposedsigpportive in
providing the user with suggestions for the zone delin@atio

under standability End users of a geographical information system are much more
likely to apply an algorithm if it can be easily understootiefefore, an algorithm
which is unlike a “black-box” algorithm is suggested.

spatial contiguity It would certainly be desirable to have spatially contigoumnage-
ment zones. It can, however, not be ensured due to the heterityg of a field.
Therefore, this contiguity should be seen as a soft comstrdiich may be violated
up to a certain degree.

spatial autocorrelation It may safely be assumed that the available data sets are spa-
tially autocorrelated: data records which are close to edlclr are very likely to
have similar variable values in contrast to data recordshviare rather distant



from each other. A spatial clustering algorithm should ekphis data property
accordingly.

3. Literature Review on Spatial Clustering

Given the data set presented in the preceding section,skésti establish an algorithm
which is able to delineate the field into spatially (mostlghtiguous clusters, so-called
management zones. From a machine learning point of viewaleis the following:
given a set of georeferenced data records consisting oftairerumber of variables,
find a spatial tessellation of these data records which issgpiate for management zone
delineation. Since it is as of now unclear which of the alddavariables contribute to
the physical and biological underpinnings of managemenéegdl11], the above broad
task should be narrowed to the following: develop an algarifor the above type of data
sets which returns a spatially (mostly) contiguous teaieth and which can be easily
parameterized by a human expert.

In precision agriculture, there are a number of approachieg)standard clustering
algorithms such as fuzzy c-means clustering [12,13,15}véder, these rely solely on
the data records’ variables and totally neglect the spstiatture of the data records.
This results in zones which are non-contiguous and spreadtbe whole field, as well
as small islands of outliers and insignificant records winthst be smoothed out manu-
ally after the clustering. A similar approach is undertakgriuzzy classification of the
data records, which exhibits the same problems [14]. Intemfdithere is no clear guid-
ance available as to which input variables enable a suedeasihagement zone delin-
eation [4,17]. It seems, however, clear that managemergszomst rely on more than
just yield data [11].

In the area of computer science, there are, to the best ofithes’ knowledge, no
clustering algorithms which would allow tackling the abd&sk on the given type of data
sets. Density-based algorithms like DBSCAN [5], CLIQUE §&]STING [22] usually
rely on a non-uniform distribution of the data records (digrdifferences) to find clus-
ters. With our data sets, the records are spatially unifpdigtributed on a grid, which
renders the aforementioned algorithms useless. An extensiinclude geographic in-
formation, as presented in MOSAIC [3], would be appropriate MOSAIC does not
distinguish between geographic space and feature spagerithims like SKATER [2]
and REDCAP [7] are different in that they explicitly incomate spatial contiguity con-
straints into the clustering process. However, these dfigns may fail to report adja-
cent clusters correctly (SKATER) or are too strict in termisranagement zone conti-
guity (REDCAP). In addition, they both rely on the fact thaita@ records are spatially
non-uniformly distributed, which is not the case here. Tag& assumption is also used
by ICEAGE [8], which is therefore not applicable either. GRANS [16] is a further
algorithm designed for clustering spatial data sets buaset on the assumption that the
structure to be discovered is hidden exclusively in theiapaéart of the data, which is not
the case here. Finally, AMOEBA [6] works on two-dimensiospétial data by building
a hierarchy of spatial clusters using a Delaunay triangariabut lacks the extension to
non-spatial variables and also assumes that the 2D pommtsoar-uniformly distributed
in space.



4. Recommendationstowardsa Novel Approach

One of the more common approaches to spatial clusteringiesarbhical agglomerative
one: start with each point in a single cluster and subsetuergrge clusters according
to some criterion or constraint. Further research into teirds-based clustering [20]
reveals that it may in principle be applied here. The auttig2@)] explicitly describes
the “spatial contiguity” constraint for spatial data as peyof global clustering con-
straint using neighborhood information, albeit for imaggraentation. The constraints
are presented as “hard” or “soft”, meaning that the finalteliisg outcome “must” or
“can” consider these constraints. The task encounterddsratticle, namely generating
mostly contiguouslusters, could therefore be tackled by using a soft spatiatigu-
ity constraint. An additional feature of constrained otuistg algorithms is the existence
of “must-link” and “cannot-link” pairwise constraints falata records. Although an al-
gorithm can usually be constructed this way or the othegéinss more appropriate to
model the spatial contiguity requirement as a “cannot®l{gkft) constraint for spatially
non-adjacent data records or clusters. In addition, thé&wbf21] encounters a similar
agricultural problem to the one in this article, but the fecuslightly shifted to yield pre-
diction on a county scale with low-resolution data, rathantusing high-resolution data
for management zone delineation. Since the focus in thi&\wgmore on exploratory
data mining in an unsupervised setup we postpone the peafarequestion.

Additionally, hierarchical agglomerative clustering sexlike a rather natural ap-
proach since the solution ultimately has to be presenteditaih experts who typically
prefer easy-to-understand solutions over black-box nsodéierefore, our focus will be
on developing a hierarchical agglomerative algorithm fane delineation which takes
the special properties of the data sets into account. Oarsids are different from the
ones in existing work since the data records are located aif@armly spaced hexagonal
grid and exhibit spatial autocorrelation. This autocatieh will be used explicitly in
our approach.

5. HACC-gpatial

This section presents an extended and refined version ofi¢harthical, divide-and-
conquer approach to delineating spatially mostly contigumanagement zones based
on precision agriculture data presented in [18,19]. Ouraggh can best be described
as hierarchical agglomerative clustering with a spatial cintity constraint(HACC-
SPATIAL) and an additional (optional) initialization step whichpits the spatial auto-
correlation in the data. It consists of two phases, in a éhadd-conquer manner. First,
the field is tessellated into a fixed number of (spatial) €isstSecond, these clusters
are merged iteratively, using a similarity measure and adfeo a spatial contiguity
constraint, which shifts from being a hard constraint to # constraint throughout the
algorithm. The algorithm is given in pseudo-code in Algomit1 (syntax close to R).
Phase 1 of HACGsPATIAL is intended to create small initial clusters or single ob-
jects for the second phase of the algorithm. For hierarthgpglomerative clustering on
single objects no further action needs to be taken. Howeler to spatial autocorrela-
tion, spatially neighboring data records are likely to beyv&@milar in their variables.
Therefore, by tessellating the field into a fixed number otigpalustersn < N, the



Algorithm 1. HACC-SPATIAL
# input:
# V ... set ofi georeferenced data vectors
# k — tessellation resolutio®, < ¢
# cp — contiguity constraint parameter
5. # output: a dendrogram of the hierarchical clustering

# split phase, ruk-means clustering on spatial locations of data vectors
C < k-meanst/, k)
return spatial clustering”
10:
# merging phase, iteratively merge clusters according to cp
spatialconstraing— “hard”
repeat
# determine and store cluster distances
15:  for each spatially adjacent cluster pair,¢;) € C do
dist,[i,j] « dist(c;.c;)
end for
for each spatially non-adjacent cluster paird;) € C do
dist;[i,j] < dist(c;,c;)
20: end for
# determine minimum/median distances and contiguity
mindist, — minimum(dist), meddist — median(dist)
mindist; — minimum(dist), meddist — median(dist)
meddist

contiguity —meddist
25:  # switch from hard to soft constraint when cp is reached

if contiguity > cp and spatialconstraint = “hardthen
spatialconstraint— “soft”
end if
if spatialconstraint == “hardthen
30: clusterpair— which(dist, == mindist,, arr.ind=TRUE)
else
if mindist, < mindist; then
clusterpair— which(dist, == mindist,, arr.ind=TRUE)
else
35: clusterpair— which(dist == mindisg;, arr.ind=TRUE)
end if
end if
i « clusterpair[1], j— clusterpair[2]
C «— C\ (ci,cj) # remove most similar cluster pair
40: C «— CU(¢; Ucj)# add newly merged cluster
until number of clusters- 1
return dendrogram of management zores



clusters are still very likely to contain similar (adjacedata records while some of the
ensuing computational effort of the merging step can bedsawéth the above prereg-
uisites, the simplest tessellation approach fulfilling tequirements is to perform/a
means clustering on the data records’ spatial coordin@tés.explicitly assumes that,
due to spatial autocorrelation, the resulting spatialtehsscontain similar data records.
This phase may be omitted, such that the second phase weunltb&gin with each point
in a single cluster.

Phase 2 of HACGsPATIAL starts either with the small contiguous clusters or from
single data records as clusters. The idea is to merge thestid consecutively into
larger clusters. In addition to the standard similarity mtahce measure, a spatial con-
straint is taken into account. Since the final result of thistering is assumed to be a set
of spatially mostly contiguous clusters, only those clissthould be merged which are
a) similar (with regard to their variables’ values) and batigd neighbors (adjacent).

In classical hierarchical clustering, the standard messfor cluster similarity are
single linkage, complete linkage and average linkage [H0jvever, when considering
the spatial data encountered here, these three criteribgoere explanatiorSingle link-
agedetermines cluster similarity based on the smallest digtdoetween objects from
adjacent clusters. Due to spatial autocorrelation, itkislyi that there are always some
points at the borders of the clusters which are very sinfiteeach neighbor. Therefore,
single linkage will not provide us with a good measure for ethheighbor to choose.
Complete linkageetermines the similarity of neighboring clusters basetherdistance
of those objects which are farthest away from each otheceSive are considering spa-
tially adjacent clusters, this would lead to very dissiméaisters being merged. Due to
spatial autocorrelation, these objects would also be apatather far away from each
other, which leads to a chaining effect and less meanindfisters.Average linkage
determines the similarity of adjacent clusters based oratleeage of the (Euclidean
or other) distances between all objects in the clusters. rAbioation of the aforemen-
tioned arguments for single and complete linkage may baegppkre: points in adjacent
clusters which are spatially close/far apart are likely lsp&e very similar/dissimilar.
Therefore, an appropriate distance for adjacent clustesste determined bgverage
group linkage we compute an average vector for each cluster and detetheértistance
between these vectors.

Itis notrequired that one zone is strictly contiguous,dansists of just one spatially
contiguous area on the field. It is a valid result if one zonapses those data records
which are similar but is made up of two or more larger areaserfield. This‘mostly
contiguous”description should be seen as a soft constraint in the finadinge steps.
To prevent the algorithm from producing too many scattei@uoes, we propose to set
it as a hard constraint during the beginning of the merginasphAs long as adjacent
clusters are similar enough, these are merged. If this isheotase, clusters which are
not direct neighbors of each other may be merged if they amdssienough. The spatial
constraint is changed from a hard to a soft constraint as asdime contiguity ratio (see
Algorithm 1) is exceeded. In the results for Figure 2, theoetgm performs well with
the hard constraint in the beginning and would switch to & amfistraint only after the
bottom plot, which has 28 clusters left, with the contiguftyeshold set to-2.
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Figure 1. Four chosen variables for which the management zone débnea applied: pH value, P, Mg, K
concentration

6. Resultsand Discussion

We now demonstrate the algorithm on multi-variate data tantlwith a correlated subset
of the original data set: we choose the four soil samplinipées (pH-value, P, K, Mg
content). From the four plots in Figure 1 it can be seen tha&rem spatial structure is
emergent, with four to six visible areas, separated by arattoss-shaped area in the
middle. This structure is the one we would like HACXPATIAL to discover.

The data set has 1079 spatial data records. As mentioned eddgbrithm descrip-
tion, a hierarchical agglomerative clustering procedues istart with each of the data
records forming one cluster. However, due to spatial autetation, spatially adjacent
data records are likely to be similar and are therefore gedlgy using &-means clus-
tering on the spatial part only. This is depicted in the tdp figure of Figure 2: we
chooseék to be 350, such that on average three neighboring data ieaogdn one cluster
initially. The algorithm then proceeds to consecutivelyrgeeadjacent, similar clusters.
This is depicted in Figure 2, top right and bottom left plottha250 and 150 clusters
left, respectively. The final plot in Figure 2 shows the omteowith 28 clusters left. We
can roughly see six zones. Those at the borders are, of cowtéyet) zones in the
sense of the algorithm, but they are easily visually distislgable. For an exploratory
data mining task, this result is what the algorithm is supgpds deliver.

Upon further examination of the resulting six zones, it tuowt that these are ac-
tually just three zones. Comparing the clustering restih wie original data set yields
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Figure 2. Clustering on the four variables from Figure 1, beginninglastering (350 clusters), after 100/200
merging steps, with 28 clusters left (left to right, top tdtbm)

the following: the largest zone which covers roughly 80%haftield could be described
with low pH, low P, medium/low Mg, low .KThe border zones on the top left, the left
and the bottom left of the field can be described vhidsh pH, high P, high Mg, high K
The small zone at the right field border and the one extendaorg the left border mostly
horizontally into the middle would bkigh pH, high P, low Mg, high KFor practical
purposes of basic fertilization this simple characterimatf a field’s principal zones is
very convenient.

Setting the parametédr for the k-means tessellation depends on the data set. For
rather homogeneous fields, this can be set to a lower vallleaﬂ%, whereN is the
number of available data records. For rather heterogerdaiassets such as the one en-
countered here, we may setitto as higHgasthereby combining roughly three adjacent
data records into one initial cluster. If the numlieof initial clusters is set tav, we
obtain a setting which may be used for data where no spatiatarrelation exists.

Setting the contiguity ratio threshold is rather straightfard: a high value (in the
implementation here> —1) leads to a later switch from a hard to a soft constraint —
therefore, the spatial contiguity is higher. A value snratten, but closer te-2 further
weakens this hard constraint. A valge—3 favors the merging of non-adjacent clusters
early in the algorithm, probably resulting in rather saatezones. For other data sets,
this parameter setting may vary, and depending on the ingoiéation, the scale may
change. Theaverage-linkagesimilarity computation using Euclidean distance may be



replaced by a different distance measure. For higher nwsriferariables, the Cosine
distance measure may be employed.

7. Summary and Future Work

This article presented a hierarchical agglomerative ehlirs approach with a spatial
constraint for the task of management zone delineationégigion agriculture. Based
on the specifics of the data sets from precision agricultuaejely the uniform spatial
distribution of the data records on a hexagonal grid and Mistence of spatial auto-
correlation, we established and recognized the shortagsnior the lack) of existing
approaches. Henceforth, we specified the requirements ofel approach: the spatial
contiguity of the resulting zones and the explicit assumptf spatial autocorrelation.

This research lead to a two-phase divide-and-conquer apprdn the first phase
we tessellated the field usiigmeans on the data records’ 2D coordinates. In the sec-
ond phase, we iteratively merged those spatially adjadasters that are similar. This
was done in two sub-phases: in the first sub-phase, the lspatigguity was a hard con-
straint, meaning that only adjacent clusters may be metgéke second sub-phase, this
was relaxed to a soft constraint. Switching from the harch&odoft constraint can be
user-influenced by a contiguity factof. Proceeding like this provided us with a hier-
archical structure which can then be examined by a humarnrefqgreguidance on the
management zone delineation. Our focus was on providingplomtory and easy-to-
understand approach rather than a fixed, black-box soluban approach worked suc-
cessfully for spatially autocorrelated precision agtictd data sets. The parameter set-
ting for k (initial tessellation) was explained. An additional pasercf was suggested
for further analysis on the spatial contiguity of the resgjtclusters.

Once the clustering algorithm finishes, a certain clusgestmould usually be exam-
ined further. The clusters may easily be examined usingu&etjitemset mining. Nu-
merical variables can be converted to a three- or five-vadtiegorical scale and the re-
sulting frequent sets could be generated as we did manualthé bottom plot of Fig-
ure 2. Although theverage linkagesimilarity calculation turns out to work rather well
in practice, it may be further researched whether diffeliekége criteria in combination
with other similarity measures could be more appropriatétawback of our work is the
lack of reference data sets from precision agriculture &nda domains in conjunction
with a similar task. We are currently investigating the floifisy of making our data sets
publicly available for this purpose.

This work has been researched and implemented during arcbssty in the
database group of Kjetil Ngrvdg and Heri Ramampiaro at NTNOnd@heim, DI,
August—October 2010.
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