NEFCON-I: An X-Window Based Simulator
for Neural Fuzzy Controllers

Detlef Nauck and Rudolf Kruse

Department of Computer Science

Technical University of Braunschweig
Bueltenweg 74 / 75, D-38106 Braunschweig, Germany
Tel.: +49.531.391.3155, Fax: +49.531.391.5936, Email: nauck@ibr.cs.tu-bs.de

Abstract— In this paper we present NEFCON-I,
a graphical simulation environment for building and
training neural fuzzy controllers based on the NEF-
CON model [6]. NEFCON-I is an X-Window based
software that allows a user to specify initial fuzzy sets,
fuzzy rules and a rule based fuzzy error. The neural
fuzzy controller is trained by a reinforcement learn-
ing procedure which is derived from the fuzzy error
backpropagation algorithm for fuzzy perceptrons [7].
NEFCON-I communicates with an external process
where a dynamical system is simulated. NEFCON-I
is freely available on the internet.

I. INTRODUCTION

NEFCON is a model for neural fuzzy controllers
based on the architecture of a fuzzy perceptron [7].
The system consists of 3 layers of units, and the con-
nections between the layers are weighted by fuzzy sets
[5, 6]. The learning algorithm defined for NEFCON
is able to learn fuzzy sets as well as fuzzy rules.

We present the learning algorithm that uses a rule
based fuzzy error measure, and that has been en-
hanced in comparision to past versions [5, 6]. Using
the fuzzy error enables us to define a reinforcement
type learning algorithm without using an adaptive
critic element as it is needed by other approaches to
neural fuzzy control [2]. The learning of a rule base
is done by deletion of rules, that means the learning
process can work online and does not need sample
data as e.g. clustering approaches [3].

To test the model a graphical simulation software
has been implemented, that can be used to define,
train and test a NEFCON system. The software is
able to communicate with a process simulating any
dynamical system.

In section II we will shortly refer to the NEFCON
architecture, and explicitely describe the learning al-
gorithm. The rest of the paper considers the imple-
mentation and presents some simulation results.

0-7803-1901-X/94 $4.00 ©1994 IEEE

II. THE NEFCON MODEL

The NEFCON model is derived from a generic model
of a 3-layer fuzzy perceptron [7] which consists of an
input layer, a (hidden) “rule” layer and an output
layer. The feedforward connections between the lay-
ers are weighted with fuzzy sets. Each of the layers
contains a number of units, where the hidden “rule
units” use a t-norm as activation function, and the
output unit combines fuzzy sets and applies a defuzzi-
fication procedure. The input units just contain the
input values and are doing no further computation.

The propagation process of input values is equiv-
alent to the evaluation of a set of fuzzy if-then rules
as it is used in usual fuzzy controllers. - The learn-
ing process in a fuzzy perceptron is based on a fuzzy
error that can be derived directly by comparing ac-
tual and desired output values, or indirectly by a set
of fuzzy rules describing the error in dependence of
the performance of the network. This error is prop-
agated back through the architecture to adapt the
membership functions.

A NEFCON system (see fig. 1) is a special 3-layer
fuzzy perceptron with the following specifications:

(i) The input units are denoted as &1,...,&n, the
hidden rule units are denoted as Ry,..., R,
and the single output unit is denoted as 7.

(i1) Each connection between units §; and R, is

labelled with a linguistic term A;-ir) (4r €

{1,...,p:}).

(ii1) Each connection between units R, and the out-
put unit 7 is labelled with a linguistic term

Bj, (Jr € {L,. -1 q})-

(iv) Connections coming from the same input unit
& and having identical labels, bear the same
fuzzy weight at all times. These connections
are called linked conncetions. An analogous

1638

Fig. 1. A NEFCON system with two input variables

condition holds for the connections leading to
the output unit 7.

(v) Let L¢ g denote the label of the connection be-
tween the input unit £ and the rule unit R. For
all rule units R, R’

(V€ Le,p = Le,p) = R=R'
holds.

This definition makes it possible to interpret a
NEFCON system in terms of a fuzzy controller; each
hidden unit represents a fuzzy if-then rule. Condition
(iv) specifies that there have to be shared weights.
If this feature is missing, it would be possible for
fuzzy weights representing identical linguistic terms
to evolve differently during the learning process. If
this is allowed to happen, the architecture of the
NEFCON system can not be understood as a fuzzy
rule base. Condition (v) determines that there are
no rules with identical antecedents. A network that
does not adhere to this condition is called overcom-
mitted NEFCON system, and it is used for learning
a linguistic rule base by deleting rule units [6].

In the following we will denote the membership
functions pj- (€ {1,...,n}, 7 € {1,...,ps}) of
the connections between the input and the hidden
layer as antecedents and the membership functions
v; (7 € {1,...,9}) between the hidden layer and
the output unit as conclusions. The antecedents are
triangular fuzzy sets with three parameters a,b,c,
and the conclusion are using Tsukamoto’s monotonic

1639

membership functions with parameters d, e [4]. They
are defined as follows:

) o
Tty it e[, o)
We) ¢80 W
—l~—7c§.i) = b;-i ifze [aj ,bj 1,
otherwise,

with af”,40, ¢ € R, a{? < 8" < o9,

di—y .. (WeEldj,e]Ndj<ej)
vy ¥ L T=e T vyely dind >e)
0 otherwise,

with d;,e; € R.

A NEFCON system is used to control a dynamical
System S with one control variable n and n variables
&1, ..., &, describing its state. The performance of
NEFCON is measured by a fuzzy error, that is de-
fined by a number of fuzzy rules like
if &, is approx. zero and &5 is approx. zero
then the error is small,
where £; and £, are two state variables of the dy-
namical system, and input variables of the NEFCON
system, respectively. Because the error is defined by
fuzzy rules, its value can be determined in the same
way as the control output 7, i.e. it is possible to use a
second NEFCON system for this task. The defuzzi-
fied error value obtained from the fuzzy rules is used
for the learning algorithm.

Definition 1 For a NEFCON system with n input
units €1,...,&, and k rule units Ry, ..., Ry, and the
output unit n the fuzzy error backpropagation learning
algorithm for adapting the membership functions is
defined by the following steps that have to be repeated
until a certain end criterion is met (see below).

(i) Calculate the NEFCON output oy:
Z OoRr-tp
=8
2 tn
R

with o = min{ug)(fl),.‘.,pg)(fn)} and
tp = I/El(OR) which defines the crisp output
value of rule unit R that can be calculated di-
rectly by the inverse of the monotonic function
VR. p%) connects the rule unit R with input
unit & and vy connects the rule unit R with
the output unit 7.

Oy

(i) Apply the oulputl value to S and determine the
new state of S.

(i11) Determine the fuzzy error E from the state of
S. This is done by evaluating a set of fuzzy
rules describing E.

(iv) Determine the sign of the optimal output value

Nopt for the new state of S (the actual abso-

lute value of the optimal oulput is unknown, of

course, but its sign has to be known).

(v) Determine for each rule unit R, the part i,
that it has in the output value 1, and calcu-

late the fuzzy rule error Eg, for each R, (r €

{1,...,k}):

E def [—og,-E 1f sgn(tr) = sgn(nopt)
R = ogr, -+ E otherwise.

(vi) Determine the changes in the parameters of the

membership functions v;_ (jr € {1,...,q}, 7 €

a,...,k}:
def

A djr = 0 ER, . ldjr - Bjrl,
with a learning rate o > 0.
Apply these changes to the fuzzy sets v; , such
that certain constraints ¥(v;) are met (see be-
low).
(vii) Determine the changes in the parameters of the
membership functions ug-’,) (fe{l,...,n}, jr €
{1,..,p:}, re{l,... k}):
def

S R)

A cg.ir) oo Eg, - (cgi) - bg?)

Apply these changes to the fuzzy sets v;_, such
that certain consiraints \Il(pg-zr)
low).

) are met (see be-

If the fuzzy error E is smaller than a certain value
for a certain number of cycles, this may be used as
a criterion to end the learning process. But it is
also possible to never stop the learning so that the
controller 1s-able to adapt to any changes in the dy-
namical system. If the controlled system has reached
a good state, the error value will be around zero, and
the changes in the fuzzy sets will be also near zero, or
compensate each other in the long run, respectively.

The constraints ¥ which can be defined on the
membership functions can be used to assure that e.g.
a < b < ¢ always holds, or that there is a certain
amount of overlapping in the fuzzy sets, etc.

1640

This learning algorithm is used to adapt the mem-
bership functions only, and can be applied if a rule
base of fuzzy rules is known. These rules can be
directly transformed into a NEFCON system. The
membership functions have to be initialized. If there
is absolutely no knowledge about them, a uniform
fuzzy partitioning of the variables can be used. The
learning algorithm only changes the width of the
fuzzy sets, not their position. This is done to re-
duce the number of changes caused by the learning
procedure, and to keep the algorithm under control.
But of course the learning algorithm can be easily
generallized, and the instructions for changing the
parameters can be analogously defined for the pa-
rameters b and e.

If only some or no rules at all are known, the learn-
ing algorithm can be extended to learn the fuzzy
rules, too. This is achieved by starting with an over-
committed NEFCON system and deleting those rule
units that accumulate the highest error values during
a training phase. If there are no known fuzzy rules,
the system starts with N = ¢ - H;;l p; rule nodes,
which represent all possible fuzzy rules that can be
defined due to the partitioning of the variables (i.e.
the number of fuzzy sets for each variable has to be
specified before). In the following definition R de-
notes the set of all rule units, Ant(R) denotes the
antecedents of a rule unit, and Con(R) denotes the
conclusion of a rule unit.

Definition 2 For an overcommitted NEFCON sys-
tem with N = ¢ - [[}—, p; initial rule units with

(VR,R' €R)
(Ant(R) = Ant(R') A Con(R) = Con(R'))
= R=R,

and n input units &1,...,&, representing variables
partitioned by p; fuzzy sets and an output unit n rep-
reseniing a variable partitioned by q fuzzy sets, the
extended fuzzy error backpropagation learning algo-
rithm for deleting unnecessary rule units uses the fol-
lowing steps.

(i) For each rule unit R, a counter C, initialized
to 0 is defined (r € {1,...,N}).
For a fized number m; of iterations the follow-
1ng steps are carried out:

(a) Determine the current NEFCON output
on using the current state of S.

(b) For each rule R, determine its part t, in
the overall output o, (r € {1,...,N}).

(c) Determine sgn(nopt) for the current input
values.

(d) Delete each rule unit R, with sgn(t,) #
sgn(nopt) and update the value of N.

(e) Increment the counters C, for all R, with
oRr, > 0.

(f) Apply o, to S and determine the new in-
put values.

(i1) For each R, a counter Z, initialized to 0 is de-
fined.
For a fized number my of ilerations the follow-
ing steps are carried out:

(a) From all subsets

R; = {R,|Ant(R,) = Ant(R,),
(F#£s)A(rse{l,... N)}CR

one rule unit R, is selected arbitrarily.

(b) Determine the NEFCON outpul o, using
only the selected rule units and the current
state of S.

(c) Apply o, to S and determine the new in-
put values.

(d) Determine the part t.; of each selected
rule unit R,; in the overall output value

(Tj € {1,,N})
(e) Determine sgn(nopt) using the new input
values.

(f) Add the error value ER, of each selected
rule unit R, to its counter Z,,.

(g) For all seleceted rule units R,, with
OR, > 0 Cy; is incremented.

Delete all rule units Ry, for all subsets R; from
the network for which there is a rule unit R,; €
R; with er < Zs;, and delete all rule units R,

with Cp < in—l—%.——ml, B > 1 from the network,
and update the value of N.

(iti) Apply the fuzzy error backpropagation algo-
rithm to the NEFCON system with k = N re-
maining rule units (see Def. 1). '

The idea of the rule learning algorithm is to try
out the existing rules, and to valuate them. Rule
units that do not pass this test are eliminated from
the network. In the first phase all rule units produc-
ing an output with a sign different from the optimal
ouput value are deleted. In the second phase the al-
gorithm has to choose from subsets that consist of
rules with identical antecedents one rule and delete
all other rules of each subset. Doing this we come

1641

from an overcommitted NEFCON system to a regu-
lar NEFCON system. In the third phase finally the
fuzzy sets are adapted.

The rule learning algorithm becomes very expen-
sive, when there are a lot of fuzzy sets defined for a lot
of variables. For this reason one should always try to
use partial knowledge to avoid that all possible rules
have to be created. If there are no known rules for
certain input states, then for these particualar states
only all possible rules have to be created. This way
the number of initial rule units can be reduced.

III. NEFCON-I — THE IMPLEMENTATION

The interactive graphical simulation environment
NEFCON-I (I means InterViews) is based on the
X-Window system and uses the graphical interface
builder InterViews. NEFCON-I has been imple-
mented on SUN workstations, and is both freely
available in binary and in source code versions on
the internet!.

After starting the program the user is able to load
the variables of a dynamical system with their fuzzy
sets, and a fuzzy rule base. If there are no fuzzy sets
or rules, they can be defined by graphical editors.
The fuzzy error is specified in the same way.

After the necessary data has been entered, a NEF-
CON system is created and a graphical interface for
supervising the learning procedure is shown (see fig.
2). The user can specify parameters for the learning
algorithm and view the changes in the fuzzy sets of
the variables. If the fuzzy rules have to be learned,
the rule table is empty at first. After the rule base
has been created by the learning algorithm the fuzzy
rules are shown.

To start a learning process and to view the perfor-
mance of the controller the user has to specify the
name of a program containing a simulation of a dy-
namical system. For an example we use an imple-
mentation of the inverted pendulum using a Runge-
Kutta procedure and the equations and constants as
they are presented in [1].

IV. SIMULATION RESULTS

In this section we present some results of the learning
capabilites of NEFCON applied to the well known
inverted pendulum. To be able to show the changes
in the control surface we only consider the angle 6 €
[—90,90] and the angle velocity 6 € [—200,200]. The
fuzzy error for all experiments shown below has been

1To obtain NEFCON-I (available in Jan. '94) establish an
anonymous ftp connection to ftp.tu-bs.de (134.169.34.15), change
to the directory local/nefcon, and retrieve and read the readme
file first.

rule table

]mgla amgleveloc position wt-wlocl

<angle>

angle
angle—veloc
position

NB NS 2 23

~veloc

NB NB

NB NS L4

NS W

P2

Pz

3

PB

cantrofler

& usa given control rules
< team rule base with [T00_Jand [T00_] steps

<> nio optimization of fuzry asts
4 optimize fuzzy sets with factor

0 fresze prolocol
0 rule leaming options

=] [=] [=]

joontrol ler started

Fig. 2. Learning and control mode of NEFCON-I

PO PZ , NZ NE

Fig. 3. Fuzzy sets of § and 6 for the definition
of the fuzzy error

0
NE NZ PZ PO
NE | NE | NE | NE | PZ
0 NZ | NE | NZ | PZ | PO
PZ | NE | NZ | PZ | PO
PO | NZ | PO | PO | PO

Fig. 4. The fuzzy error rules

defined by the fuzzy sets and rules shown in fig. 3
and 4.

For the first experiment we used the rule base
shown in fig. 5. In fig. 6 the fuzzy sets of 8 are shown
before and after learning. With the initial partition-

1642

rule table
«angle>
nb [ns nz pz ps -3 pb
<
a nb nb nb
n
g na nb nn) ns
|
o ng nb nn ns nz
- nz ng ns nz
v
e P Pz [Ps
|
0 [ad Pz P2 Ll b
: [[l Pa [ad) pb
[[l b

Fig. 5. The rule base of NEFCON

ing the controller was not able to balance the pen-
dulum. After a few failures and after restarting the
pendulum at random angles, the final fuzzy sets de-
veloped and the pendulum was stable. This solution
took about 2000 cycles which is about 2 min. com-
puting on a SUN 2 Sparcstation.

The figures 7 and 8 show the control surface before
and after the learning process. The final control sur-
face is much smoother than the initial one, resulting
in a better control behavior.

The second experiment considers the learning of a
rule base. For this the fuzzy sets learned during the
first experiment are used. After the learning algo-

rihtm ran for 6000 cycles, it came up with the rule-
base shown in fig. 9. The controller can balance the
pendulum with this rule base, and after the fuzzy
sets have been adapted for a few hundred additional
cycles the controller can even cope with disturbances

(U

Fig. 6. The fuzzy sets of § before and after learning

0
(OO0
o

ST TSI ST)
RSLSToTS "o"-‘
0 ,’lll;;if;:"lli;'o IS

Fig. 8. Control surface after learning

1643

rule table
<angle>
nb ™m ns nz pz ps pm ph

<
a nb
n
g nn m na
i
e ne ne n nz
- nz rb rb nz
v
e pz pz pb pb
I
o ps Pz pbr Pz
[
> i m pz

eb

Fig. 9. Rule base learned by NEFCON-I
V. CONCLUSIONS

We have presented the learning algorithm of the
NEFCON model which is able to learn the fuzzy sets
and the fuzzy rules of a neural fuzzy controller by
backpropagating a fuzzy error measure through the
NECON architecture. Using a knowledge based error
enables the reinforcement type learning procedure to
work without an adaptive critic element.

The model has been implemented in a graphical
simulation environment showing that the algorithms
can successfully learn the necessary parameters while
controlling the simulation of a dynamic system. Fur-
ther research will be concentrated on generalizing the
learning algorithm, e.g. to be able to use center of
gravity defuzzification.

REFERENCES

[1] Andrew G. Barto, Richard S. Sutton, and Charles W.
Anderson. Neuronlike adaptive elements that can solve
difficult learning control problems. IEEE Trans. Sys-
tems, Man & Cybernetics, 13:834-846, 1983.

Hamid R. Berenji and Pratap Khedkar. Learning and
tuning fuzzy logic controllers through reinforcements.
IEEE Trans. Neural Networks, 3:724-740, September
1992.

Bart Kosko. Neural Networks and Fuzzy Systems. A
Dynamical Systems Approach to Machine Intelligence.
Prentice-Hall, Englewood Cliffs, 1992.

Chuen Chien Lee. Fuzzy logic in control systems: Fuzzy
logic controller, part i. IEEE Trans. Systems, Man &
Cybernetics, 20:404-418, 1990.

Detlef Nauck and Rudolf Kruse. A neural fuzzy con-
troller learning by fuzzy error propagation. In Proc.
Workshop of North American Fuzzy Information Pro-
cessing Society (NAFIPS92), pages 388-397, Puerto
Vallarta, December 1992.

Detlef Nauck and Rudolf Kruse. A fuzzy neural net-
work learning fuzzy control rules and membership func-
tions by fuzzy error backpropagation. In Proc. IEEE
Int. Conf. on Neural Networks 1993, pages 1022-1027,
San Francisco, March 1993.

Detlef Nauck and Rudolf Kruse. A fuzzy perceptron as
a generic model of multilayer fuzzy neural networks.
December 1993. submitted.

