
6

Ensemble Learning for Multi-source
Information Fusion

Jörg Beyer, Kai Heesche, Werner Hauptmann, Clemens Otte, and
Rudolf Kruse

Abstract. In this chapter, we propose a new ensemble learning method. The
main objective of this approach is to jointly use data-driven and knowledge-
based submodels, like mathematical equations or rules, in the modeling pro-
cess. The integration of knowledge-based submodels is of particular interest,
since they are able to provide with information not contained in the data.
On the other hand, data-driven models can complement the knowledge-based
models with respect to input space coverage. For the task of appropriately
integrating the different models, a method for partitioning the input space for
the given models is introduced. Using that kind of ensembles, the advantages
of both models are combined, i.e., robustness and physical transparency of
the knowledge-based models and approximation abilities of the data-driven
learning. The benefits of this approach are demonstrated for a real-world
application.

Jörg Beyer
Siemens AG - CT IC 4, Otto-Hahn-Ring 6, 80200 Munich, Germany
Otto-von-Guericke-University Magdeburg - School of Computer Science,
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1 Introduction

Modern technical systems are characterized by an increasing degree of sophis-
ticated behavior. The traditional way of modeling has been by mathematical
equations representing the physical behavior. However, the identification of
parameters is time-consuming and expensive. Data-driven models, like artifi-
cial neural networks, can be used to approximate physical phenomena. But,
the data-driven modeling approach usually suffers from the lack of physical
understanding of the model parameters. The resulting model only relies on
the training data and does not use any other information source available.
Thus, it is desirable to combine available information in terms of knowledge-
based models, i.e., models which are based on domain or process knowledge,
designed without training data and to complement this information with the
data-driven approach.

The integration of knowledge-based submodels has several advantages:

• enhancing the interpretability, i.e., a domain expert can easily comprehend
the decisions,

• providing information not contained in the training data and
• reducing the amount of required training data.

For these reasons, an important factor for the generation of adequate models
of a technical system is the use of available information in terms of knowledge-
based models and the supplementation of this information by data-driven
models learnt on the training data. Since a knowledge-based model represents
a particular subsystem, information with respect to its validity has to be
included in the overall model.

The objective of the proposed approach is to generate an ensemble that
is able to integrate the available knowledge-based submodels and to comple-
ment these submodels by data-driven ones. Using that kind of ensembles the
advantages of both models are combined, i.e., the robustness and physical
transparency of the knowledge-based models and the approximation abilities
of data-driven learning.

The use of multiple models is also motivated by the paradigm that different
partial models can complement each other by appropriate compensation of
weaknesses and strengths of the individual models. Much of the work on
ensemble techniques has strong parallels with the research on information
fusion (IF) systems. In common with the research on IF, several architectures
exist and different combination schemes have been developed. Later in this
chapter, we give a review of IF.

The chapter is organized as follows: In Secton 2, an introduction of IF is
given and Section 3 describes different methods for creating ensembles. In
Section 4, two ensemble models for combining data-driven and knowledge-
based models are proposed. In Section 5, some experiments on a real-world
application are outlined. Section 6 concludes the study.
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2 Multiple Source Fusion

Information fusion is an important technique in different application domains,
such as sensor fusion [9], identity verification [2], signal and image processing
[5], and others. Due to the heterogeneity of the applications, several defini-
tions of the term: information fusion exist. In Section 2.1, some definitions
of IF are stated and the adopted definition of IF is given. A classification of
IF is described in Section 2.2.

2.1 Definition

There exist many definitions of IF or data fusion. In [25], IF is described
as a ”multilevel, multifaceted process dealing with the automatic detection,
association, correlation, estimation, and combination of data and informa-
tion from multiple sources.” This is a general definition that suggests the
combination of data or information without specifying its objective. Wald
considers data fusion as formal framework that formulates means and tools
for the combination of data from different sources [23]. In this definition, the
focus lies on the framework used to fuse data. Wald also states that data
fusion ”aims at obtaining information of greater quality”. The term quality
means that the fused information is somehow more appropriate to the appli-
cation than the original information. The most general definition comprising
any type of source, knowledge, and resource used to fuse different pieces of
information is given by Dasarathy [7], which states that IF ”encompasses the
theory, techniques and tools created and applied to exploit the synergy in the
information acquired from multiple sources (sensors, databases, information
gathered by humans beings, etc.) in such a way that the resulting decision
or action is in some sense better (qualitatively or quantitatively, in terms of
accuracy, robustness, etc.) than would be possible, if any of these sources
were used individually without such synergy exploitation.”

Fusion implies the combination of information from more than one source.
There are different reasons for fusion of multiple sources:

• The combined solution is able to attain more accurate, transparent, and
robust results, since the different information sources can complement each
other with respect to their strengths and weaknesses.

• A model that depends on a single source is not robust in the sense that if
the single source is erroneous, the whole model is affected. Models based
on fused information sources are more robust, since other sources are able
to compensate erroneous information.

Here, we chose to use IF as the process of merging and integrating heteroge-
neous information components from multiple sources, for instance, in the form
of sensors, human experts, symbolic knowledge, or physical process models.
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2.2 Classification of Information Fusion

In this study, complementary and cooperative information sources are dis-
tinguished. They are discriminated with respect to the relationships among
the information sources. In complementary fusion, each source provides with
information from a different region of the input space, i.e., their responsibil-
ities do not overlap. Locally, these sources provide with a high performance.
However, outside their regions, the results are not valid. Cooperative fusion
means that the information is shared among several information sources in
the same region of the input space and has to be fused for a more complete
modeling of the underlying process.

3 Ensemble Models

There exist many approaches, which address the issue of learning and com-
bining local models. The resulting model, referred to as ensemble, is generally
more accurate than any of the submodels generating the ensemble. Both em-
pirical [14] and theoretical [13], [17] research has demonstrated that in a good
ensemble, the submodels are accurate on different parts of the input space,
so that they complement one another. Figure 1 shows a common ensemble
model.

The algorithms for learning local models can be discriminated with respect
to several aspects: the architecture (parallel or sequential learning of the
submodels), the way they divide the training data into subsets, or how they
fuse the outputs of the local models.

Fig. 1 A common ensemble model. The ensemble members are trained on possibly
different data sets Dj . The dashed line indicates that the Combining Rule can be
trainable dependent on the combining method
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3.1 Stacked Generalization

Stacked generalization (or stacking) creates an ensemble of submodels, whose
outputs are used as inputs to a second level combiner to learn the mapping
between the ensemble member outputs and the target values [26].

The basic idea is that the outputs of the ensemble members have informa-
tion that can be used to construct good combinations of the members and
a procedure is sought for combining them. In the first step, a set of sub-
models is trained (with possibly different training data sets, submodel pa-
rameters, etc.). The outputs of these submodels and their corresponding true
target values are then used as input/output training pairs for the second level
combiner.

3.2 Boosting

Boosting is a method for improving the accuracy of any given learning al-
gorithm [19]. The submodels in a boosting ensemble are trained sequentially
on training data that has been filtered by the previously trained submodels
in the ensemble. The boosting procedure is as follows: the first submodel is
trained with a random subset of the training data. The training data set
for the second submodel is chosen as the most informative given the first
submodel. In case of classification, the submodel is trained on training data,
the half of which is misclassified by the first submodel, and the other half
is correctly classified. The third submodel is trained with input patterns, on
which the first two submodels disagree. The submodels are combined using
either averaging or a voting scheme.

A popular variation of the original boosting algorithm is AdaBoost (adap-
tive boosting) [11]. In AdaBoost, submodels can be added until some desired
training error has been achieved. For that purpose, each training pattern
receives a weight that determines its probability of being selected for the
training of a new submodel. If a training pattern is misclassified, its proba-
bility of being selected in a subsequent submodel is increased. In this way,
training data of consecutive submodels are focused on hard to separate pat-
terns. This process can be repeated to form an ensemble, whose joint decision
has arbitrarily high accuracy on the training set.

3.3 Mixture-of-Experts

The mixture-of-experts (ME) model consists of a set of models, also called
experts, that perform a local function approximation [15]. ME models can be
described as input-dependent mixture models, which solve problems by the
divide-and-conquer strategy, i.e., they learn to decompose complex problems
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into simpler, easier to solve subproblems. This decomposition is learned by
a gate function by partitioning the input space and assigning submodels
to these regions. The output y of the ME model for an input vector x is
computed as the combination of the weighted outputs y (x, θj) of the M
submodels

y =
M∑

j=1

πjy (x, θj) , (1)

where θj are the parameters of model j, πj is the j-th output of the gate
model and is constrained to

∑M
j=1 πj = 1.

There exist several variations of the ME model, which differ in the kind of
training algorithm [16], [24], [4] and gate function [27].

3.4 Piecewise Linear Regression Models

Piecewise linear models assume a different linear behavior of the true function
in different regions of the input space. The model described in [10] assumes
that the input space can be divided into disjoint regions characterized by
different (linear) behavior of the function to be approximated. The model
learns the local linear models by an appropriate clustering of the input space.

A switching regression model assumes that the target values are generated
by a number of distinct processes [21]. Quandt developed a method for es-
timating the switching point, i.e., the point where the processes switch, by
searching through all possible switch points and finding the maximum of an
appropriate likelihood function [18].

4 Fusion of Locally Valid Heterogeneous Models

The fusion of locally valid heterogeneous models is a crucial process during
the training and affects the reliability and performance of the results of the
integrated model. To assign the available knowledge-based models to the
regions of input space, for which they are defined, the fusion rule has to take
into account their validity ranges. For this purpose, a gate function, similar
to the ME approach, is used.

In Section 4.1, validity functions defined for knowledge-based models, are
described. In Section 4.2, we propose an adaptation of the ME model, called
heterogeneous mixture-of-experts (HME). The HME model uses the validity
functions during the partitioning process to assign knowledge-based models
to the correct regions of the input space. In Section 4.2.2, we use a clustering
algorithm as gate function that considers the data density and predictive
performance of the local models for separation of the input space.
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Fig. 2 Left: This figure shows an example of a validity range with the following
parameter setting: l1 = 0 and u1 = 100 in one dimension and l2 = 0 and u2 = 50 in
the second dimension and a slope s = 8. Right: The slope of the borders depends
on s for s = 1 (dashed line), s = 4 (dotted line), and s = 100 (solid line)

4.1 Validity Function

The validity function of a knowledge-based model represents the region of
input space the model is designed for. The validity function of model j is
defined as

vj

(
x(n)

)
=

(
1

1 + exp
(
sj

(
x(n) − uj

)) − 1
1 + exp

(
sj

(
x(n) − lj

))
)

, (2)

where lj and uj determine the lower and the upper bounds of the validity
range and sj defines the slope of the border. The effect of different values of
sj is shown in Fig. 2. The larger sj is, the steeper is the slope of the border.
In this way, the transition between the local models can be controlled. These
parameters are determined by domain expert.

4.2 Heterogeneous Mixture-of-Experts

This sub-section discusses about hetero-geneous mixture-of-experts.

4.2.1 Introduction

In this section, we define heterogeneous mixture-of-experts (HME) to fuse in-
formation of multiple information sources [3]. The basic idea of this approach
is to additionally include information about the specific validity ranges of the
predefined knowledge-based models to be used for the partitioning of the in-
put space. Thus, it is ensured that the predefined models are assigned to
those domains of the input space they are explicitly designed for. On the
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other hand, data-driven models are used to close the gaps between different
knowledge-based models with respect to input space coverage.

The HME model can be interpreted as a generating one, i.e., the data
are generated by a set of M independent processes, which are randomly
selected. Fig. 3 shows an example of an HME model. The introduction of
a latent variable Z =

{
z
(n)
j : j = 1, . . . , M, n = 1, . . . , N

}
where z

(n)
j is 1

if input vector x(n) was generated by model j and 0 otherwise, and the
data set D =

{
x(n) ∈ �k, t(n) ∈ �, n = 1, . . . , N

}
, allows the HME model

to be trained with the Expectation-Maximization (EM) algorithm [8]. The
probabilistic model can be seen in Fig. 4, which shows the belief network
of the HME model. This expresses the assumption that the target t(n) is
dependent on the input x(n) and the multinomial random variable z(n). We
define the conditional scalar output t(n) given the input vector x(n) and the
parameter of the model as:

P
(
t(n)

∣∣∣x(n), Θ
)

=
M∑

j=1

P
(
z
(n)
j

∣∣∣x(n), θg

)
P

(
t(n)

∣∣∣x(n), θj

)
, (3)

where Θ comprises the parameter of the gate θg, and of the models θj ,
j = 1, . . . , M . The probability P

(
t(n)

∣∣x(n), θj

)
represents the conditional

Fig. 3 Architecture of the HME model. The selection of the local models depends
on x. The gate and the local models may use different feature subsets of the input
vector
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Fig. 4 Graphical rep-
resentation of the HME
model. Random variables
will be represented by
open circles and deter-
ministic parameters will
be denoted by smaller
solid circles. The box
contains N copies of the
nodes shown inside it

densities of target t(n) for model j and P
(
z
(n)
j

∣∣x(n), θg

)
is the weighting

coefficient of model j. The negative log likelihood function is used as error
function:

log L = −
N∑

n=1

M∑

j=1

h
(n)
j log P

(
z
(n)
j

∣∣∣x(n), θg

)

−
N∑

n=1

M∑

j=1

h
(n)
j log P

(
t(n)

∣∣∣x(n), θj , z
(n)
j

)
,

(4)

where h
(n)
j represents the posterior probability of selecting model j for input

vector x(n). The first term of the right-hand side of equation (4) is the part of
the error that the gate contributes to the overall error. It can be interpreted
as the entropy of the distribution of the input vectors among the models.
The second term of equation (4) presents the error component, which the
individual models contribute. This is the cross-entropy among the posterior
probability h

(n)
j and the probability that model j has generated the target

value t(n).
To guide the partitioning of the gate, the posterior probability h

(n)
j is

computed in the E step:

h
(n)
j =

vjP
(
z
(n)
j

∣∣x(n), θg

)
P

(
t(n)

∣∣∣x(n), θj , z
(n)
j

)

∑M
l=1 vlP

(
z
(n)
l

∣∣x(n), θg

)
P

(
t(n)

∣∣∣x(n), θl, z
(n)
l

) . (5)

The role of the gate’s output and the mapping vj can be interpreted as follows:
Based on the performance the gate’s task is to assign a selection probability
to the submodel, whereas the mapping vj evaluates the validity of the model
for an input vector. By doing so in (5), the gate will be enforced to decrease
the weights of model outputs, if the input vectors are located outside their
domains. The particular amount of decrease in weight is dependent on vj .



132 J. Beyer et al.

The M step then involves finding the optimal set of parameters of the gate
and the local models. It decomposes into the following separate optimization
problems:

• For the parameter of the gate:

Lg = −
N∑

n=1

M∑

j=1

h
(n)
j log P

(
z
(n)
j

∣∣∣x(n), θg

)
(6)

• For the parameter of the data-driven local models:

Lj = −
N∑

n=1

M∑

j=1

h
(n)
j log P

(
t(n)

∣∣∣x(n), θj , z
(n)
j

)
(7)

The parameters found on the M step are then used to begin another expec-
tation step. These two steps are repeated until an appropriate convergence
criterion, e.g., previously determined number of training iterations, is fulfilled.

4.2.2 Clustering Gating Function

In this section, we use a clustering algorithm to partition the input space
and to assign local models to these partitions. It corresponds to the gate
function in the HME model. To generate an appropriate partitioning of the
input space, not only the data density in the input space is considered but
also the performance of local models in the output space and the validity
ranges of knowledge-based models.

For each local model one cluster is used. The training process comprises two
main steps. First, the assignment of data to cluster prototypes is dependent
on the distance between the data and the prototypes, the validity ranges and
the predictive performance of the corresponding local models:

r
(n)
j =

exp
(∥∥x(n) − μj

∥∥2
)

exp
(
−1/vj

∥∥t(n) − y
(
x(n), θj

)∥∥2
)

∑M
l=1 exp

(∥∥x(n) − μl

∥∥2
)

exp
(
−1/vl

∥∥t(n) − y
(
x(n), θl

)∥∥2
) , (8)

Second, both the cluster prototypes and the data-driven submodels are
trained according to their weighted error for the training data:

μj =

∑N
n=1 r

(n)
j x(n)

∑N
n=1 r

(n)
j

, (9)

and

Δθj =
N∑

n=1

r
(n)
j

(
t(n) − y

(
x(n), θj

)) ∂y
(
x(n), θj

)

∂θj
. (10)
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At the end of the training process, the clustering algorithm has partitioned
the input space among the submodels. While the knowledge-based models are
only active inside their validity ranges, the data-driven models are responsible
for the remaining input space.

5 Applications of Information Fusion

In Section 5.1, some applications for fusion of analytical and data-driven
models are described. In Section 5.2, we describe the deployment of the HME
model in a real-world application.

5.1 Combinations of Analytical and Data-Driven
Models

In the field of machine learning, several approaches address the combination
of analytical and data-driven models. Data-driven models can be either used
to approximate nonlinear parts of the process to model parts of the process
that are not observable, or as a state or disturbance estimator.

In [20], an RBF-network and an analytical model of the rolling mill pro-
cess control system are combined. For unknown inputs, the RBF-network
produces a correction factor close to one, thus, in these cases, the output of
the overall model is determined by the analytical model alone. The advan-
tage of this approach is that a baseline performance can be guaranteed by
the analytical model.

Abonyi et al. describe an approach for using first principles models and
data-driven ones, e.g., artificial neural networks (ANNs), for Generic Model
Control [1]. The first principle model determines the dominant structure of
a controller while data-driven models are used as a state or disturbance esti-
mator. Van Lith et al. combine a physical framework, which builds the basis
structure and complement it with fuzzy models derived from data [22].

In [12], a partial analytical model is combined with an ANN for dynamic
modeling of an industrial fed-batch crystallization process. Since the target
outputs of the ANN are not measured, the network outputs are fed to the
analytical part of the hybrid model and the hybrid model’s output are com-
pared with available data. The network parameters are updated depending
on the observed error.

The objective of our approach is to use of a combining rule that is data-
generated and does not need manual adaption. The combining rule decides
which submodel or submodels is/are responsible for generating the output de-
pending on the particular input vector. Furthermore, it must be able to train
data-driven submodels for parts of the input space not covered by knowledge-
based models.
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5.2 Modeling of Energy Flow in a Hybrid Electric
Vehicle

The application addresses the simulation of electrical energy flow in the elec-
trical system of a hybrid electric vehicle. Four distinct driving modes can
be defined and represented by the available expert knowledge: a pure electric
drive mode, a hybrid drive mode, a brake mode, and a drag mode. Depending
on the current drive mode, electric energy is either used to drive the electric
motor or produced by the generator. In pure electric drive mode and hybrid
drive mode, energy is provided by the battery to drive the electric motor. In
brake mode and drag mode, the electric motor is operating as a generator to
regenerate the kinetic energy used for charging the battery. Domain experts
designed specific models for each mode. These models represent complemen-
tary information sources because they are defined for different regions of the
input space and each model provides with information for different mutually
exclusive driving modes. Furthermore, the battery must maintain certain
chemical limits. These limits determine the maximum charge and discharge
capabilities of the battery depending on its state of charge and temperature.

The training data set in this example consists of about 10.00 input pat-
terns, where each input pattern is 5-dimensional. The validation data set
comprises approximately 100.00 input patterns. The target is one-dimensional
and represents the electrical energy in kW.

Both ensemble methods: HME with a multi-layer perceptron (MLP) gate
and HME with a cluster gate, are compared with a standard ME, an ensemble
of MLPs, a single MLP, and a radial basis function (RBF) network. Two
HME models use four local models each. Two characteristic maps and a
mathematical model represent the pure electric drive mode, brake, and drag
mode. However, since the hybrid drive mode is too complex to provide with
a simple mathematical model, for this mode a two-layer MLP with 5 input
units, 6 hidden units and one output unit were trained. Each mode uses
different input features for the modeling. As gate, an MLP with 4 hidden
units was applied.

The ME consists of 4 MLPs with 8 hidden units and as gate an MLP
with 6 hidden units were used. The single MLP comprises 12 hidden units.
The RBF network comprises 14 Gaussian basis functions. In the ensemble, 10
members are combined. All members have the same architecture, i.e., MLPs
with a single hidden layer of 6 units. The output of the ensemble is computed
as follows:

yens =
1
K

K∑

j=1

yj

(
x(n)

)
, (11)

where yj

(
x(n)

)
is the output of the j member and K is the number of en-

semble members.
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As predictive measure, the means absolute error is used:

e =
1
N

N∑

n=1

∣∣∣t(n) − f
(
x(n)

)∣∣∣ . (12)

Table 1 summarizes 10-fold-crossvalidation runs that are performed to esti-
mate the predictive error of the regression models on previously unseen data.
The HMEs with both MLP gate and clustering gate have achieved superior
performance due to the incorporation of available information sources. Figs. 5
and 6 show the outputs of the gate (the activation of the submodels) of the two
HME models. In most of the cases, the MLP gate selects only one submodel for
each input vector. In case of clustering gate, the activations of different sub-
models are distributed slightly more than the MLP gate. This behavior is con-
sistent with the knowledge of the domain expert that the submodels are defined
for different slightly overlapping modes. Against the background of domain
knowledge, the ME model is not able to identify the driving modes and has
divided the input space in a technically non-plausible way. This is illustrated
in Fig. 7. The overall output is composed of the outputs of the submodels.

Table 1 Error of the models on the hybrid vehicle data set

model
predictive error
training testing

HME with MLP gate 2.10 2.14
HME with cluster gate 2.25 2.31
ME 2.78 2.88
ensemble 2.39 2.47
RBF 3.85 3.96
MLP 2.51 2.61

Table 2 shows the distribution of the responsibilities of the mode models
for data of the corresponding driving mode. The values indicate that the
mode models are correctly assigned to the partitions of the driving modes.
These responsibilities are depicted as shaded background in Figs. 5 and 6
and confirm the results in Table 2.

Further, the incorporation of available knowledge requires fewer training
data. The smaller the size of the training data set, the less robust are the re-
sults of data-driven models. In Table 3 and Fig. 8, the results for different sizes
of the training data sets are shown. The results indicate that the proposed
models require fewer training data compared to other regression methods to
yield good predictive performance. For training data set sizes of D/2, D/4,
and D/8 (where D indicates the original training data set), the predictive
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Fig. 5 The figure shows the activations of four submodels by the MLP gate of the
HME model. The shaded background indicates data that correspond to the driving
mode, which is represented by the mode model. The HME model has correctly
identified the different driving modes and the mode models are responsible for data
of the corresponding driving mode

Fig. 6 The figure shows the activations of four submodels by the cluster gate of
the HME model. The shaded background indicates data that correspond to the
driving mode, which is represented by the mode model. The HME has correctly
identified the different driving modes. The activations of the different submodels
are distributed slightly more than the MLP gate
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Fig. 7 The figure shows the activations of four data-driven submodels by the gate
of the ME model. The ME model is not able to identify the driving modes and has
divided the input space in a technically non-plausible way
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Fig. 8 The plot shows the predictive error of the models for different sizes of the
training data set. The HME models with both MLP gate (asterisk) and clustering
gate (downward-pointing triangle) have a slightly increasing error for small sizes of
training data set. For small sizes of the training data set, the error increases of the
ME model (diamond), the ensemble (upward-pointing triangle), the RBF (circle),
and the MLP (square)
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Table 2 Responsibilities of the mode models for data of the corresponding driving
mode

HME model
driving mode (in %)

brake pure electric drive drag hybrid

MLP gate 98 94 93 98
cluster gate 89 92 85 87
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Fig. 9 The plots show examples of violations of the chemical battery limits (de-
picted as horizontal lines) of (a) the ME (solid line), (b) the ensemble (solid line),
(c) the RBF (solid line), and (d) the MLP (solid line). The corresponding target
values and outputs of the HME with MLP gate are depicted as dotted and dashed
lines

performance of the models is approximately equal. However, for smaller sizes
of the training data set, the error increases for purely data-driven models.

The chemical battery limits are violated by all models, except the HME
models, because they predict energy flows that cannot be provided by the
battery as shown in Fig. 9. The necessary information about these limits
is not contained in the training data, but they are implicitly contained in
the given knowledge-based models. Thus, purely data-driven models are not
capable to maintain these limits.
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Table 3 Predictive error of the models for different sizes of the training data set
on the hybrid vehicle data

model
size of training data set D

D D/2 D/4 D/8 D/16 D/100

HME with MLP 2.14 2.13 2.14 2.16 2.20 2.30
HME with cluster gate 2.31 2.31 2.33 2.35 2.39 2.51
ME 2.88 2.91 2.96 3.08 3.22 4.33
ensemble 2.47 2.49 2.54 2.64 2.82 3.81
RBF 3.96 4.00 4.08 4.21 4.37 5.26
MLP 2.61 2.62 2.69 2.82 2.99 4.35

6 Conclusions

By applying the proposed ensemble learning model, it is possible to fuse in-
formation from multiple sources, represented by knowledge-based models. In
this way, information can be incorporated in the modeling process that is
not contained in the training data. For example constraints can be implic-
itly contained in knowledge-based models but domain experts may not be
able to describe them, since the domain experts do not explicitly perceive it
or they cannot define such constraints. Data-driven submodels are used to
complement knowledge-based ones with respect to the coverage of the input
space. To be able to integrate given knowledge-based models into the process
of simultaneously training the data-driven submodels and a gate model, it is
crucial to incorporate the validity ranges of the knowledge-based models. A
further advantage is the need of fewer training data, which is beneficial if a
few training data are available or if the acquisition of data is expensive.

We have tested the HME models successfully for the simulation of electrical
energy flow in the electrical system of a hybrid electric vehicle. They have
achieved a superior performance compared to previous approaches.
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