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Abstract: Solving product yield and quality problems in a 
manufacturing process is becoming increasingly more difficult. 
There are various types of failures and their causes have complex 
multi-factor interrelationships. Semiconductor manufacturing is 
very complex due to the large number of processes, diverse 
equipment set and nonlinear process flows. Its manufacturing 
database comprises of hundreds of process control, process step 
and wafer probe data.  This huge volume of data coupled with 
quicker time to market expectations is making finding and 
resolving problems quickly an overwhelming task. In this study, 
a methodology developed using dynamic growing self-organizing 
map (GSOM) to detect the faulty products in a wafer 
manufacturing process. As part of the methodology, a clustering 
quality measure was developed to evaluate the performance of 
the algorithm in separating good and faulty products. Results 
show that the algorithm was able to separate good and faulty 
products from the raw data. Even though this work has focused 
mainly on clustering good and faulty products, the technique can 
be extended to model the failure causes of the lower yielding 
products. 

I.  INTRODUCTION 
 
Manufacturers constantly face the yield and quality problems 
as they constantly redesign their processes for the rapid 
introduction of new products and adoption of new process 
technologies. Automatic, real-time collection of 
manufacturing data is common practice for modern 
manufacturing processes. The analysis of large volumes of 
manufacturing data, interpreting results, and implementing 
design improvements is computationally intensive and time-
consuming.  A high priority goal for wafer manufacturing is 
finding the most probable causative factor(s) that discriminate 
between low yield and high yield product by quickly 
examining the historical manufacturing data.  
 
 

 
In order to decrease design cycles and, thereby, the time to 
market for new products, it is important to have a method for 
quickly and efficiently analyzing manufacturing data, 
predicting the effects of design changes, and determining the 
best design parameters. Advances in data mining have 
provided techniques for automatically discovering underlying 
knowledge from large amounts of data.  

 
The objective of the present research was to develop a 
methodology using GSOM [1] to detect faulty products from 
manufacturing data and to demonstrate the effectiveness of the 
developed methodology by applying in a semiconductor wafer 
manufacturing. In this paper, the results of an industrial 
application of the methodology are presented. The 
methodology was successfully implemented in separating 
good and faulty products in a wafer manufacturing facility.  
 

II.  DATA MINING APPROACHES 
 
Data mining methods can be used to extract useful information 
from enormous volumes of data. It enables trends to be 
discovered from observed data, and has the potential for 
providing the underpinning technology for decision support 
tools. Such methods may use machine learning, statistical 
methods, and visualization techniques to discover and present 
knowledge in a form which is easily comprehensible to 
humans. 

 
Self-Organising Maps (SOM) [1, 2] has been widely used 

in data mining/knowledge exploration to visualise high-
dimensional data and to reduce its dimensions. Many variants 
extending the conventional SOM's capabilities were proposed 
to allow more flexibility and adaptiveness by introducing 
controllable and consecutive growth during the training 
process. The next section will briefly explain the SOM and 
GSOM algorithms.  

 



 

 

III. SOM and GSOM ALGORITHMS 
 
 A.   Self-Organising Map  

 
For a self-organising map of k neurons, where i ≤ k, for each 
input vector x, there exists a winning neuron mb with 
minimum euclidian distance to the input x, such that 

{ }iib mxmx −=− min .           (1) 

This is referred to as the competitive learning part of the 
learning process, since all neurons compete to be the winner. 
 
Then the winning neuron’s and its neighbouring neurons’ 
weights at time t+1 are adapted according to the learning rule  
      ][ )()()()()1( tmxthttmtm ibiii −+=+ α ,           (2) 
where, α(t) is a monotonically decreasing learning rate and 
hbi(t) is a Gaussian neighbourhood kernel given by 

)(22

2

)( t
irbr

etbih σ

−
−

= ,              (3) 

where rb and ri are positions of the winning neuron and neuron 
i respectively,  and σ(t) the neighbourhood radius. The 
learning rule makes the weights of winning neuron and its 
neighbours more similar to the input x. 
 
Self-organising maps have the ability to compress data, deal 
with missing data, preserve data similarity and represent data 
in a visible low-dimensional space.  However, existing self-
organising map algorithms suffer from drawbacks like static 
structure, border effect, structure warping, sensitive to 
learning rate parameter, inexistence of cooperative and 
competitive learning, inability to fully preserve data similarity 
and all without ability to apply to time series data [3, 4].   
 
B. GSOM and Modified GSOM ( with hexagonal topology) 
 
To overcome some of the known limitations of SOM, 
Alahakoon et al.[1] proposed a dynamic growing self-
organizing map (GSOM) algorithm. Hsu et al. [5] further 
improved GSOM with a hexagonal topology. The original 
GSOM only supports rectangular topology. Hexagonal 
topology is known to have better topology preservation for 
SOM [2]. GSOM has the same topology structure and weight 
vector adaptation rules as SOM. A significant difference 
between these two algorithms is that SOM is not capable to 
grow but GSOM grows according to its own growing 
criterion. A parameter of growth, growth threshold (GT), is 
defined as: 
 
                                GT = −D × ln(SF),                         (4) 
 
where D is the dimensionality of data and SF is the user 
defined spread factor that takes values between 0 and 1with 0 
representing minimum and 1 representing maximum growth.  
 

The algorithm first identifies the winning node. Then an 
accumulated error E of the winning node is updated by the 
following rule: 
 
                             E(t + 1) = E(t)+ I − wwinner ,             (5) 
 
where I is the input vector and wwinner is the weight vector of 
the winning node. If the winning node is the boundary node 
and E exceeds GT, growing is initiated on that node to fill the 
surrounding unoccupied spaces of the lattice. If E of the 
winning node exceeds GT but the winning node is not a 
boundary node, E is propagated outwards to other 
neighbouring nodes. Weights of the new nodes will be 
initialized according to the following equation: 
 
                              wnew = 2wwinner − wopposite ,             (6) 
 
where wopposite represents the weight of the node topologically 
opposite to the new node. If these are not the topologically 
opposite nodes, weights of the new nodes will be calculated 
according to the following equation: 
 
                         wnew = wwinner + wother1 − wother2 ,           (7) 
 
where wother1 and wother2 are weights of the nodes nearest  to the 
new node. For hexagonal topology, equation (6) is applicable 
as there will always be a neighbour of the winning node that is 
topologically on the opposite side of the new node. 
 

IV. DETECTING FAULTY WAFERS WITH 
MODIFIED GSOM 

 
Dataset used in this study for experimental purpose was made 
available by Motorola USA. The quality problem of Motorola 
wafer fabrication is described below [6].  
 
A. The problem  
 
Motorola wafer manufacturing facility had a stable and mature 
fabrication facility and was consistently achieving very high 
product yield. However, for unknown reasons, the average 
product yields started to degrade by certain percentage. 
Moreover, the degradation was not continuous, rather 
periodic, for short period of time. In manufacturing process, 
periodic degradations are more difficult to detect than 
continuous failures. Yield improvements over such narrow 
ranges at already high yield are also difficult. Another 
problem was that, Motorola’s established process control 
measurements were not sensitive enough to detect this 
particular problem during manufacturing. Only the final 
electrical testing was able to detect the problem. The cause of 
the failure was the excessive transistor collector/emitter 
leakage current. Unfortunately, when the problem was 
detected, substantial value had been added to the faulty wafers 
already.  
 
 



 

 

 
B. Application of Standard fault detection methods  
 
More than five years was spent to determine the reasons for 
this periodic failures applying standard technique called a 
“Design of Experiments" (D.O.E)[6]. Manufacturing and 
quality control engineers proposed several models to explain 
the leakage current occurrence. Device, diffusion and epitaxial 
silicon growth engineers performed over 30 design of 
experiments (DOE) throughout this time period to address 
every possible cause they thought. However, no significant 
progress was made. After five years, a special cross-functional 
team was formed to address the leakage current problem. For 
about a year, the team performed different types of 
experiments to determine the cause of leakage. Finally, the 
designed experiments were able to detect the cause of the 
problem.  It was found that a collector to emitter pipe caused 
by a defect stacking fault was occurring somewhere in the 
process. It took well over five years to find it. 

 
C. Data mining approach 
 
The authors believed that the Motorola’s wafer yield problem 
described above can be solved using modified GSOM 
algorithm. In the context of analysis of manufacturing quality 
problems, the focus involves two main aspects- separation of 
good and faulty products and identifying the reason for yield 
failure. The present study focused in to the first aspect. The 
challenge is not solely in the clustering alone, but also to 
obtain meaningful and adequate number of clusters. With 
meaningful clusters, grouped in appropriate numbers, 
identification of the reasons that contribute significantly to the 
differentiation of clusters would become a simpler task. We 
apply a fully unsupervised methodology that uses a 
combination of dynamic SOM tree [11] and Growing Self-
Organizing Maps (GSOMs) in manufacturing data analysis.  
 
D.  A quality measure  
 
It was anticipated that 100% separation of good and faulty 
products was not possible. This is because there are so many 
attributes and there could be many reasons for yield failure.  In 
order to compare the results of running simulations with 
different parameters on the same dataset, or with the same 
parameters on differently preprocessed data, this section will 
introduce a quality measure which takes the complete cluster 
map into account and can be generated automatically as an 
objective quantifier. 
 
The desired clustering would be a binary clustering at best, 
i.e., the complete separation of the ‘good’ from the ‘faulty’ 
products on the GSOM. The data available for developing the 
benchmarking method are (a) the original distribution of data 
between ‘good’ and ‘faulty’, and (b) the data from the 
generated map, i.e., the distribution of input vector references 
among the map's neurons. 
 

The benchmark should yield a number between 0 and 1 as a 
quality measure of the input vector separation among the 
neurons. Zero (0) means no difference in data distribution, i.e. 
no clustering at all and 1 means a high probability of good 
clustering.   
 
Mathematically, clustering quality can be expressed as:  
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where 
B  = total number of faulty products, 
G  =total number of good products, 
N  =total number products (B+G), 

i  = number of faulty products in neuron , b i

i  = number of good products in neuron , and g i
 = number of products  in neuron . in i

 
A perfect separation of input vectors is achieved if all the 
neurons contain only input vectors from one class (i.e. either 
‘good’ or ‘faulty’), in which case the benchmark should yield 
1. A bad separation (or no separation, i.e. cluster neurons have 
same distribution of original dataset) should be benchmarked 
with a 0. For example, if we consider 100 inputs and 80 of 
them are good and 20 are faulty. Let us consider that final 
cluster has 3 neurons and these three contain 40 good, 20 
faulty and 40 good products respectively.  If we use these 
values in equation (8), CQ will be 1. The detail of this 
example is presented in Table 1. 
 
TABLE 1 : Sample calculation of CQ 

Inputs in each 
neuron 

Total 
inputs 

Neuron 
Index 

Good Faulty 

CQ of 
neuron 

CQ of 
the 
cluster 

1 40 0 0.4 
2 40 0 0.4 

 
100 

3 0 20 0.2 

 
1.0 

 
The proposed quality measure was evaluated using Motorola 
wafer yield data. Two test datasets were generated to evaluate 
the effectiveness of the developed clustering quality measure 
(and, simultaneously, the functionality of the used GSOM 
implementation as well). As the interests lie in assessing 
binary clustering quality, two samples which represent the 
original dataset's two different classes of the original dataset 
(good and faulty) were taken from the normalised dataset and 
repeated 50 and 500 times respectively. The resulting test 
datasets had dimensions of 59x100 and 59x1000 and, due to 
the generation, consist of two easily distinguishable classes. 
These two datasets were then fed into the GSOM.  
 



 

 

The generated GSOM maps can be found in Figure 1. Both 
maps were computed with the parameter set [SF=0.5, GP=3] 
and showed the desired CQ value of 1 since both classes are 
perfectly separated on the maps. 

 
                 (a)                                            (b) 

 
Figure 1: Generated maps with test dataset, (a): 59x100, (b): 

59x1000 
 
E. Data Preprocessing   
 
 Data preparation (or problem reformulation) is an essential 
step in the data mining process. The original manufacturing 
data (such as machine ID) cannot be directly utilized by 
GSOM. Therefore the data must be reformulated in terms that 
can be handled by the data-mining algorithm. Categorical data 
should be converted to numerical values for the GSOM.   
 
The original dataset was historical wafer data collected for 
2500 wafers from a 2-month period. The input database 
measured 133 parameters by 17,246 entries organized into an 
Excel file. The data consisted of:  

 
• Wafer Probe Data - The pass/fail count per wafer of 39 

wafer probe functional tests. 
• Process Control Data - There were 59 numerical 

electrical PC measurements probed at 8 sites per wafer. 
• Process Step Data – There were 33 process parameters, 

hand collected parametric and non-parametric data such 
as material vendor/lot, wafer boat position, operator & 
machine IDs, etc. 

 
In the dataset provided, each entry had a reference number 
which determined whether the product was a good one or a 
faulty one. Therefore number of good and faulty products was 
known, allowing us to compare with the results. 
 
1). Expansion of categorical data: The dataset consisted of 
numerical as well as categorical data. Categorical values were 
converted to 0 and 1 as explained in Table 2. In this process 
each column with categorical data was expanded to many 
columns depending on the number of different categorical 
values in that column. 
 

 
TABLE 2: Expansion of categorical data 
Original 
data 

Expanded data 

X103 P4812 P4815 P4753 P4683 
P4812 1 0 0 0 
P4815 0 1 0 0 
P4812 1 0 0 0 
P4753 0 0 1 0 
P4683 

 
 
 
⇒  

0 0 0 1 
 
2). Removal of outliers: Among the original dataset there are 
few outliers which are most probably caused by incorrect 
measurements from the production lines (e.g. faulty meters or 
errors during transmission); which manifest by being several 
orders of magnitude different from the remaining majority of 
the data. Assuming that the normalisation is carried out in the 
usual way, even a single outlier can influence the  data mining 
process. A more intuitive explanation can be obtained from 
Figures 2, where the immediate effect of the outliers is 
obvious, scaling the majority of values to nearly zero and the 
few outliers to one, therefore rendering the data mining 
process nearly useless. However, it shall be noted that the 
distribution of ‘good’ and ‘faulty’ input vector references did 
not undergo a major change after outliers were eliminated; the 
percentage of ‘good’ products changed from 85.92% to 
86.04% whereas the percentage of faulty products was 
reduced by the respective amount. 
 

 
Figure 2: Data distribution after normalisation including 
outliers 
 
3). Normalization:  After removing the outliers, every data 
attribute was scaled between 0 and 1 using Equation (9). 

minmax

min

XX
XXN i

i −
−

= ,             (9) 

where, 

i =  Normalized value of ith data, N

i =  Input value, X

maxX = Maximum value of each column, and 

minX = Minimum value of each column  
 
F.  Simulation Results 
 
Clustering quality was determined for different spread factor 
(SF) and number of growing phases (GP). Spread factor 
determines the final size of the map by providing the user with 
a convenient, high-level way to influence the map's internal 
growth accordingly [1]. A larger spread factor means a more 
spread-out and therefore larger final GSOM. SF was varied 

Good  
products 

Faulty  
products 

Good  
products Faulty 

products



 

 

 

 

 

igure 3. Clustering quality of simulation using old data 

igure 4. Clustering quality of simulation using new data 

 

igure 5: Comparison of CQ with old and new data (SF = 0.9) 

t is thought that introduction of a large number of attributes 

t should be noted here that CQ is the measure of all the 

anufacturing data, the objective is not limited to finding 

from 0.1 to 0.995 during simulations. GP determines the 
running time of the algorithm and also the size of the map. It 
was varied from 1 to 100. However, GP more than 10 gave no 
better results but increased computational time significantly.   
Simulations were run with data with and without eliminating 
the ‘outliers’. Different parameters in the programme, namely 
spread factor and number of growing phase, were changed to 
check the improvement in cluster quality. The dataset before 
eliminating the outliers was termed as ‘old’ and after 
eliminating outliers was termed as ‘new’.  
 
Figure 3 shows the simulation results of the old dataset for 
different spread factor and number of growing phases. It can 
be seen that clustering quality improved with the increase of 
both SF and GP. Our experiments show that GP>10 do not 
improve results significantly. Hence the plots in Figures 3-5 
are limited to GP<10. 
 
Similarly, simulation was run with the ‘new’ dataset. Figure 4 
shows the simulation results with new dataset. A comparison 
between the results with old and new dataset was made and 
presented in Figure 5. It can be seen that after eliminating 
outliers from the data, CQ has risen by 3- 12% (SF 0.8) and 2-
8% (SF 0.9). However, overall CQ peaks at about 0.5 when 
perfect clustering quality should be close to 1. 

F
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I
(because of the expansion of categorical data) created 
unnecessary noises in the dataset. It may be necessary and of 
great insight to study the effect of removing several attributes 
from the input dataset and check its impact on the generated 
maps. This will generate and/or confirm knowledge about 
possible non-contributing attributes.  
 
I
neurons in a cluster. In practice, it is not possible to have all 
neurons with 100% good or faulty products. Although CQ is 
in the range of 0.55, the GSOM was able to make few clearly 
different clusters for good and faulty products. Figure 6 shows 
the clusters for new data (with SF=0.9 and GP=10). In this 
cluster, many nodes were found with 100% good or 100% 
faulty products. It shows that the GSOM was able to separate 
good and faulty products. Moreover, clusters with good and 
faulty products were found at opposite ends. This indicates 
that distance between good and faulty products was correctly 
identified. As there are neurons with 100% good and faulty 
products, it is possible to find the underlying reason for this 
separation.  
 
 For m
the separation of good and faulty products. The main objective 
is to find the underlying reason for poor yield. To discover 
this, it is necessary to create cluster of good and faulty 
products, as has been done in this study, and then apply rule 
induction method (to be developed under this project) to find 
the reasons for making two clusters. The technique is being 
extended to model the failure causes of the lower yielding 
products. 
 
 
 
 
 
 



 

 

 

i p for new data (with SF=0.9 and GP=10) 

V. CONCLUSIONS 
 

his paper has described an intelligent data mining system for 

1. Partial Automation of knowledge discovery in the 

2.  GSOM algorithm to automatically 

 
The preliminary experiments with data mining and wafer 
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