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A Treatment Outcome Prediction Model of Visual
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Abstract—Brain injuries caused by stroke, trauma, or tumor of-
ten affect the visual system that leads to perceptual deficits. After
intense visual stimulation of the damaged visual field or its border
region, recovery may be achieved in some sectors of the visual field,
but the extent of restoration is highly variable between patients and
is not homogeneously distributed in the visual field. We now assess
the visual field loss and its dynamics by perimetry, a standard
diagnostic procedure in medicine, to measure the detectability of
visual stimuli in the visual field. Subsequently, a treatment outcome
prediction model (TOPM) has been developed, using features that
were extracted from the baseline perimetric charts. The features
in the TOPM were either empirically associated with treatment
outcomes or were based on findings in the vision-restoration lit-
erature. Among other classifiers, the self-organizing map (SOM)
was selected because it implicitly supports data exploration. Us-
ing a data pool of 52 patients with visual field defects, the TOPM
was constructed to predict areas of improvement in the visual field
topography. To evaluate the predictive validity of the TOPM, we
propose a method to calculate the receiver operating characteristic
graph, whereby the SOM is used in combination with a nearest
neighbor classifier. We discuss issues relevant for medical TOPMs,
such as appropriateness to the patient sample, clinical relevance,
and incorporation of a priori knowledge.

Index Terms—Hemianopia, intraindividual prediction, self-
organizing map (SOM), treatment outcome prediction model
(TOPM).

I. INTRODUCTION

B EING able to predict treatment outcome is important to
optimize therapy in modern medicine. To achieve this goal,

computerized technology, employing a priori knowledge of the
disease, is used to help predict specific treatment outcomes.
The ability to predict treatment outcomes is not only useful
for gaining further insight into mechanisms of recovery (i.e.,
contributing factors to recovery), but will also aid the clinician
in estimating treatment efficacy in individual patients and may
provide new insights toward improving effectiveness. We have
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developed and tested a prediction model in the field of visual
system plasticity using self-organizing maps (SOMs) as the core
of a treatment outcome prediction model (TOPM). Besides the
generally accepted recommendation to favor simple algorithms
rather than complex algorithms [1], there is no consensus in
the literature as to which algorithm is best suited for a specific
problem. We have chosen the SOM because it provides data
visualization and can be extended to classification and prediction
purposes as well.

Here, the SOM is applied to data obtained from patients with
visual field defects caused by stroke, traumatic brain injury, or
other etiologies that lead to cerebral lesions. It was observed
that such visual field defects can be reduced by systematically
presenting visual stimuli at the border region of the damaged
visual field [2]–[5] using “vision restoration training” (VRT).
Because not all patients can be treated in all areas of the visual
field, it is desirable to find methods that efficiently predict the
extent of visual restoration. The proposed methods of outcome
prediction presented here have potential utility for other medi-
cal problems in which topographic diagnostic charts are used.
Within this context, we present a TOPM that allows both the
prediction of the extent as well as the topographic distribution
of the recovery of visual functions in individual patients.

A. Visual System

To enhance the features that are used in the TOPM, we briefly
consider some fundamental aspects of the visual system. The
visual system information pathway begins at the retina where
light is transformed to electrophysiological signals that are trans-
mitted by the retinal ganglion cells through the optic nerve to
different brain regions. The primary visual cortex (also called
“V1”) computes basic features of visual images and scenes and
works in concert with many “higher” brain regions to which it
is reciprocally connected [6]. The visual system is the largest
sensory processing system in the brain. About 30%–50% of the
cerebral cortex is committed to process visual information that
compares to only 8% in the auditory and 7% in the somatosen-
sory system [7]. This is the reason why brain damage due to
stroke or head injury is often accompanied by loss of visual
functions as expressed by partial or total blindness. The loss of
visual function, as well as its restoration (recovery), is typically
assessed by “perimetry,” which is a behavioral-/computer-based
test, whereby patients are asked to respond to small target stim-
uli that are presented in a random fashion within the visual field.
Depending on the performance of the patients (responding or
not responding to the stimulus by pressing a button), diagnostic
charts are obtained that describe the location of areas of relative
or total blindness (see Fig. 1).
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Fig. 1. Visual field diagnostic charts (HRP charts) obtained from computer-
based visual field assessments. In each respective location of the chart, three
above-threshold stimuli are presented at random time intervals and locations.
The top panel displays “reaction time charts” (averaged among the three test
stimuli per position). Minimal response time is coded in white (about 350 ms)
and maximal response time in black (about 900 ms). Detection misses (no re-
sponses) are represented by a cross. Bottom panel: the “detection chart” shows
areas with: 1) complete blindness in black (zero out of three stimuli were ac-
knowledged by the subject; chart value: 0); 2) intact vision shown in white (3/3
acknowledged test stimuli; chart value: 1); and 3) areas of residual vision shown
in gray (1/3 or 2/3 stimulus presentations were acknowledged, chart value:
1/3, 2/3). This chart is taken from a patient suffering from a quadrantanopia.
The diagnostics chart resolution is GX = 25 × GY = 19 stimuli (background
luminance: 86 cd/m2 , stimulus luminance: 23 cd/m2 , stimulus size: 0.4◦, in-
terstimulus distance: 1.7◦). To reduce eye movements that can compromise
diagnostic quality, patients are required to fixate on a central fixation point and
respond to color changes (catch trials) presented at random intervals.

B. Diagnosis of Damage to Visual System

Diagnostic visual field charts (see Fig. 1) are an important
part of neurological and ophthalmologic examination [8]. Vi-
sual field testing can detect and localize defective areas as well
as monitor dynamic changes (deterioration or recovery) within
the visual field [9]. The size, form, and location of a given vi-
sual field defect (also called scotoma) are often indicative of the
specific location of the damage within the visual pathway. The
“high-resolution perimetry” (HRP) assesses the visual field in
high spatial resolution with bright, high-contrast (superthresh-
old) stimuli. The stimuli are presented on a computer screen,
which is positioned 40 cm in front of the subject, while the head
of the subject is stabilized by using a chin rest (this reduces
body and head movements during the diagnostic session). The
subject responds by pressing a button whenever the presented

test stimuli are perceived. During the diagnostic procedure, the
subject fixates on a static point at the center of the diagnostic
area (the fixation spot). The diagnostic output is a topographi-
cal chart that schematically illustrates the visual field defects of
each patient. Several (here, three) single diagnostic tests, which
are assessed shortly after each other, are superimposed to ob-
tain a chart that displays visual detections (MapDetection ) and
reaction times (MapReactionTime). This computer-based peri-
metric procedure [10] examines the central visual field (±20◦)
in a valid and reliable way [11]. On the basis of these detec-
tion charts, three different types of diagnostic spots are defined
depending on their state of functionality: 1) total defect with
zero detections out of three presentations [denoted with “0” in
(1)]; 2) intact vision where patients responded three times cor-
rectly after three stimulus detections [denoted with “1” in (2)];
or 3) residual vision with one or two detections [denoted with
“1/3” and “2/3” in (3)]. These three diagnostic spot types are
defined by the concept of a stencil

stencilDefect(x, y) =

{
1, iff mapBaseline

Detection(x, y) = 0

0, else

}
(1)

stencilIntact(x, y) =

{
1, iff mapBaseline

Detection(x, y) = 1

0, else

}
(2)

stencilResidual(x, y) =


1, iff mapBaseline

Detection(x, y) =
1
3
∨ 2

3
0, else


.

(3)

C. Vision Restoration Training

Although the greatest plasticity of the visual system can be
found during the postnatal state, it can also be seen in adulthood,
within weeks or months following damage to the visual system.
Immediately after visual cortex damage (e.g., due to stroke),
spontaneous recovery can be observed, putatively mediated by
cortical reorganization [12]–[14]. VRT was developed to treat
patients after their spontaneous recovery has been completed by
visually stimulating the visual field border in order to repeti-
tively activate partially damaged regions located between areas
of the intact and defective visual field [2]. The treatment area
is adjusted monthly depending on the progress of the patient.
When patients with visual field defect carry out this treatment,
1 h per day for a period of six months, significant improve-
ments (enlargements) of the visual field have been observed in
30%–70% of all patients [2]–[5], [15], [16]. The goal of the
present study was to develop and test a new outcome prediction
model in which extent and the topographic location of visual
field restoration can be estimated.

D. Treatment Outcome Prediction

The following is a useful definition of medical prognosis [17]:
“Medical prognosis is the prediction of the future course and
outcome of disease processes, which may either concern their
natural course or their outcome after treatment.” In contrast to
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predicting the type of a disease, treatment outcome prediction
considers the time component [17]. In general, the TOPM is used
by clinicians as a recommendation tool to select the treatment
with the highest expected benefit to the patient. The prediction
model extends the knowledge of the physician and offers the
benefit of a second opinion [1]. The TOPM described here pre-
dicts the outcome of treating intrasubject visual field areas. The
local prediction is “spot-based” (a spot is a point in the visual
field) and the treatment outcome of a specific spot is either im-
provement (termed “hot spot”) or no improvement (“cold spot”).
Our TOPM methodology comprises the following three steps:
1) building a TOPM that can predict the treatment outcome
based on the baseline diagnosis and diagnostic charts from pa-
tients who have completed VRT; 2) extracting predetermined
features (described later) from a patient’s baseline diagnostic
charts who has not yet participated in VRT (as either “impaired”
spots with zero or one out of three possible detections or
“intact” spots with two or three out of three possible detec-
tions); and 3) predicting the treatment outcome [based on the
features obtained from step 2)] for all impaired spots by using
the TOPM [derived in step 1)].

A labeled database was collected to support SOM learning
and cross validation, which contains pairs of baseline and post-
treatment diagnostic charts from 52 selected patients. Charts
from another three patients (not part of the learning set) were
chosen randomly to visualize the TOPM output. Diagnostic data
were retrospectively selected from a patient pool of two prior
studies with hemianopic subjects [4], [18]. Both studies were
carried out in accordance with the provisions of the declaration
of Helsinki.

II. FEATURE SELECTION

Feature selection is the task of deciding which features are
relevant to the target classification (in this case, treatment out-
come). The suitability of features that are used for the TOPM
determines the performance of the prediction model even more
than the choice of the classification algorithm [19]. This is im-
portant especially within the medical domain where the datasets,
when collected automatically, may contain many “don’t care”
attributes [20]. Hence, features should be evaluated by domain
experts using the available numerical information [21]. Accord-
ingly, we selected and constructed appropriate features based on
the current practice of VRT and literature of clinical and neu-
roscientific studies related to VRT. The anatomy of the visual
cortex, results of cortical lesion experiments, and the domain
knowledge from experts of VRT were considered [10]. To de-
termine the predictive value of the features, several dependent
measures, Spearman and Pearson correlation coefficients (ρ),
and the analysis of variance (comparing population means µ)
were used preceding this study and were tested for statistical sig-
nificance (p). The examined features were grouped into global
and local features. Global features address chart-related infor-
mation, while local features relate to a specific spot in the visual
chart. A short description of the features and what is known
from the literature are given later.

Fig. 2. Prototypic visual field defects. Homonymous quadrantanopia (left)
in the upper left quadrant and hemianopia (middle) of the left hemifield. In
many patients, the border zone is not as sharp as in the left and middle panels
but shows variable performance, i.e., broken up with residual spots forming a
diffuse residual border (right).

A. Global Features

1) Size of Residual and Defect Area: The defective sector of
the visual field is usually rather compact and covers large areas
of the visual field, i.e., up to half of the visual field in patients
with hemianopia and about a quarter in quadrantanopia (see
Fig. 2). The size of the visual field defect was not significantly
correlated with the treatment outcome [16] in contrast to other
studies where patients with small defect areas showed a stronger
improvement than patients with large defect areas (right eye:
ρ = −0.544, p < 0.05; left eye: ρ = −0.639, p < 0.05) [23],
[24].

Areas of residual vision are usually located at or near the
border region that separates the “seeing” field from the “blind”
field. But residual vision can also occur in compact areas within
the defect or intact visual field. Both features are included in the
TOPM and are computed as follows:

defect area =
GY∑
y=1

GX∑
x=1

stencilDefect(x, y) (4)

residual area =
GY∑
y=1

GX∑
x=1

stencilResidual(x, y). (5)

It was repeatedly observed that visual field improvements oc-
cur in areas where the detection of stimuli is unreliable (termed
areas of residual vision indicated by shades of gray in Fig. 1,
bottom panel) [5], [15]. Specifically, the size of the residual area
before treatment correlated significantly (ρ = 0.68, p = 0.001)
with the treatment outcome [24]–[26]. However, the position of
residual spots is somewhat unstable because residual functions
are prone to fluctuations caused by fatigue, stimulus saliency,
and general attention [27].

2) Reaction Time: The reaction time varies largely between
and within subjects. In one study, patients with faster reac-
tion time experienced a more pronounced visual field increase
(ρ = 0.44, p < 0.05) [26], whereas another study (assessing
a different group of patients) found no significant correlation
between reaction times and treatment outcome [24], [28]. Nev-
ertheless, we considered the reaction time in the TOPM and
computed it only from intact spots (such that the reaction time
is averaged among three stimulus presentations per location),
(6), as shown at the bottom of the next page.
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3) Conformity to Hemianopia and Quadrantanopia: This
feature expresses the degree of similarity of the visual field of a
given patient with a “pure” hemianopia and quadrantanopia, as
displayed in Fig. 2. The “pure” hemianopia (one hemifield com-
pletely intact and the other hemifield completely blind) is very
rare. It may be caused by total anatomical damage of the visual
system in one hemisphere. Both features are considered in the
TOPM because past clinical experience shows that restoration is
unlikely if a visual field defect is complete and close to the pure
form [8]. These features are based on combined values from the
ratio of defect spots (ratioi

defect) and the homogeneity (noisei)
of the ith quadrant

di
defect = ratioi

defect(1 − noisei). (7)

The conformity to hemianopia and quadrantanopia is then cal-
culated from combining the ddefect values from all four quad-
rants [see (8) and (9)] such that, e.g., quadrantanopia of the
second quadrant is represented by defect spots in the second
quadrant and intact spots in the first, third, and fourth quadrants
[see Fig. 2 (left) and (9)]

hemianopia

= max

(
d1

defectd
4
defect(1 − d2

defect)(1 − d3
defect)

d2
defectd

3
defect(1 − d1

defect)(1 − d4
defect)

)
(8)

quadrantanopia

= max




d1
defect(1 − d2

defect)(1 − d3
defect)(1 − d4

defect)

d2
defect(1 − d1

defect)(1 − d3
defect)(1 − d4

defect)

d3
defect(1 − d2

defect)(1 − d1
defect)(1 − d4

defect)

d4
defect(1 − d2

defect)(1 − d3
defect)(1 − d1

defect)


.

(9)

4) Border Diffuseness: The extent to which the visual field
border is diffuse or sharp is an important parameter that is also
typically related to the size of residual vision. Therefore, we have
used a “diffuseness” measure by calculating the ratio of residual
spots among all spots in the border area (this is described in
detail elsewhere [10]). The border area is 5◦ wide and located
between the defect and intact area [see Fig. 3(a)]. The border
is defined as “diffuse” if many residual spots lay inside the
border area and “sharp” if almost no residual spots are inside
the visual scotoma border. In the VRT literature, diffuseness
of the border was often proposed as a strong determinant of
restoration [4], [5], [15], [29], [30] and is also considered in the
TOPM.

B. Local Features

In order to predict the treatment outcome for each spot, local
spot-related features are introduced to extend the global features.

1) Distance to Scotoma: The distance between the spot and
the scotoma border [see Fig. 3(b)] is estimated in cortical coor-

Fig. 3. Schema of global and local features. (a) Global feature border diffuse-
ness measures the fraction of residual spots within the border area (hatching),
which is defined as the area that touches the defect area and extends 5◦ into
the residual (gray) or intact area (white). (b) Distance to scotoma measures the
distance d between a spot and the defect border and is estimated in cortical
coordinates considering cortical magnification. (c) Schematic illustration rep-
resenting examples of different local neighborhoods that are differentiated into
neighborhood activity (top) and neighborhood homogeneity (bottom). They are
ordered from low to high activity and from high to low homogeneity. (d) Activity
and the homogeneity are based on the concept of the local spatial neighborhood,
which is inspired by the connectivity between neurons where intrinsic horizontal
connections (indicated by branches) exist between neurons.

dinates. By using a coordinate transformation model [31], visual
field coordinates are transformed into cortical coordinates con-
sidering cortical magnification factor. This feature is utilized in
the TOPM as the distance to the scotoma (measured in cortical
millimeter) significantly separates (p < 0.01) “hot” (µ = 3.2 ±
0.67 mm) from “cold” spots (µ = 5.9 ± 0.65 mm) [22].

2) Neighborhood Measures: The probability of restoration
is associated with the average activity of spots within a 5◦ vi-
sual angle around a damaged spot [see Fig. 3(c)]. If the sur-
round is relatively intact, and therefore physiologically more ac-
tive, restoration is more likely. We described elsewhere that the
neighborhood activity (values between 0 = not active and 1 =
fully active) around hot spots (µ = 0.37 ± 0.03) was signifi-
cantly (p < 0.01) higher than around cold spots (µ = 0.10 ±
0.03) [22]. Lateral horizontal connections [black branches in
Fig. 3(d)] in the visual cortex could explain such a center–
surround relationship between neurons in the primary visual
cortex. These horizontal connections are anatomically and phys-
iologically well described [46] and their function is to integrate
visual information over a specific cortical distance. Another
measure to describe the neighborhood is to use measures of
variability of the residual activity (neighborhood homogeneity)
within the immediate surround of the spot, which is the standard
deviation from the average of neighborhood activity.

3) Visual Field Position: Hot and cold spots are not uni-
formly distributed in the visual field, but are a function of the
location of the visual scotoma, and are therefore considered in
the TOPM. It was observed that the eccentricity (which is de-
fined as the distance of the spot from the visual field center in
degrees of visual angle) was positively correlated (ρ = 0.415,
p < 0.05) with the amount of the defect border shift (which is
comparable to the definition of treatment outcome used in this
paper) [24], [28]. In addition, it was hypothesized that recovery
follows the cortical magnification, i.e., improvement increases
with increasing eccentricity [25].

4) Residual Function: In contrast to border diffuseness that
measures the amount of residual vision of the whole border, the

reaction time =

∑GY
y=1

∑GX
x=1 (MapBaseline

Reaction Time(x, y)stencilIntact(x, y))∑GY
y=1

∑GX
x=1 stencilIntact(x, y)

(6)
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measure residual function is directly related to the spot itself
and measures the strength of the damage (zero or one detections
out of three presented stimuli; spots with two or three detections
are not considered because they are not classified as impaired).
It is interpreted as the probability of stimulus detection at that
particular specific spot position. In a recent study, we found a
significantly (p< 0.01) higher residual function (values between
0 = absolute defect and 0.33 = residual) of hot spots (µ = 0.16
± 0.01) in comparison to cold spots (µ = 0.04 ± 0.01) [22].
The residual function of each spot is equal to the detection chart
value at the respective position (x, y)

Residual Function(x, y)

=




0, iff mapBaseline
Detection(x, y) = 0

1
3
, iff mapBaseline

Detection(x, y) =
1
3


 . (10)

III. KOHONEN SELF-ORGANIZING MAP

In addition to selecting appropriate features, the development
of a TOPM requires selecting an appropriate classification al-
gorithm. SOMs, introduced by Kohonen [32], are based on the
calculation of the Euclidean distance in multidimensional space.
SOMs have convinced experts of their usability in the medical
domain [33]. They are a preferable tool for exploratory data
analysis because of their data visualization capabilities; they are
used for correlation hunting, unsupervised and supervised clus-
ter analysis, multivariate feature analysis, as well as for novelty
detection and classification [34].

A. Data Exploration

In practice, SOMs decompose the high-dimensional feature
space into multiple low-dimensional maps (also termed com-
ponent planes). In this application, the 12-D feature space is
substituted by 12 2-D maps. The component planes are feature-
specific projections onto the SOM surface after learning. Each
plane shows the data distribution separately for the respective
feature (see Fig. 4). This operation does not require finding a
new interpretation for the resulting components, as would be
the case in principal component analysis (PCA; see Fig. 5). The
component planes consist of map units that enable the data to
be visualized, while preserving the topography of the original
feature space. Each map unit has become a highly sensitive fea-
ture detector after learning [34]. Importantly, due to the SOM-
specific cooperative learning scheme, adjacent map units have
similar feature values. The map units represent cluster centers
in the data distribution and maintain the same position in each
of the 12 component planes, so that, by using location, the dis-
tribution of the data samples is visually comparable between the
component planes.

The map units are labeled as hot (“+”) and cold spots (“0”).
The label is not shown for each map unit because the map is
separated compactly between hot and cold spot map units. Each
data sample in the learning database is assigned to exactly one
map unit (minimizing the distance between map unit and data
sample). The topography of hot and cold spots in the compo-

Fig. 4. Component planes of global (top row) and local (bottom row) features
extracted from the baseline diagnostic charts. The distribution of values of the
respective feature is shown for hot (“+”) and cold (“0”) spots. These planes are
used for both data exploration and prediction.

Fig. 5. PCA with varimax rotation (applied to all 12 features, local and global).
Four components were determined with an eigenvalue >1, explaining 69% of the
variance. The first two components are shown above. To deduce knowledge from
PCA component graphs, an appropriate interpretation of the PCA components
must be found. Furthermore, by using only the first two PCA components, a
clear discrimination between hot (“+,” black) and cold spots (“·,” gray) is not
visible without adding further PCA components. However, a 3-D (or more)
PCA component space reduces the visibility of the data distribution. In contrast,
the component charts of the SOM algorithm are 2-D, features specific, and are
comparable by location (see Fig. 4).

nent planes (see Fig. 4) after learning is relatively robust if the
learning process is repeated.

The distance between the closest cold and hot spot map units
in Euclidean space was found to be relatively broad in compar-
ison to the distance between map units belonging to the same
class (this was concluded from the distance matrix). This shows,
first, that there is a “natural” difference between cold and hot
spots in the sample distribution, and second, that a robust dis-
crimination between predicted cold and hot spots exists.

By visual inspection of the component planes, hypotheses
about the relationship between the treatment outcome and the
various features, as well as their interdependencies, can be
formulated. To demonstrate the data exploration by using the
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Fig. 6. Diagnostic charts of three randomly selected patients (first column) that were not part of the learning set. The actual treatment outcome is shown in the
second column (hot “+” or cold “·” spot). The third column shows the predicted treatment outcome for each impaired spot at baseline. The location of spots from
individual baseline charts projected onto the SOM is shown in the right column. The respective SOM location differs widely among the three patients (higher
frequencies are indicated by a larger circle size) and reflects the respective values of global and local features.

SOM, we formulated four hypotheses based on the component
planes and then evaluated each hypothesis by statistical mea-
sures (shown in parentheses).

Hypothesis 1: Little or no restoration (represented by cold spots)
is observed in charts with a small residual area (values be-
tween 18 = few residual spots and 117 = many residual spots,
µcold = 41.6, µhot = 63.1, p < 0.01) and with high affinity to
hemianopia (values between 0 = not compatible with hemi-
anopic pattern and 1 = fully compatible with hemianopic
pattern, µcold = 0.51, µhot = 0.36, p < 0.01).

Hypothesis 2: Residual area and border diffuseness are strongly
positively correlated (ρ = 0.75, p < 0.01), and hemianopia
and quadrantanopia are strongly negatively correlated (ρ =
−0.78, p < 0.01), which is indicated by the brightness distri-
bution of the respective features in the component planes.

Hypothesis 3: Residual function is a good discriminator between
hot and cold spots; only few map units in the hot spot region
have a low value of residual function (values between 0 =
absolute defect and 0.33 = residual, µcold = 0.02, µhot =
0.12, p < 0.01).

Hypothesis 4: The component charts indicate that global fea-
tures of the visual charts as a whole are less appropriate for
prediction than local features. The brightness distribution of
the local features (Fig. 4, bottom row) shows a better associ-
ation with the map unit labeling of hot and cold spots in com-
parison to the brightness distribution of the global features
(Fig. 4, top row). The fourth hypothesis is supported if the

features are ranked with respect to the magnitude of each fea-
ture’s Pearson correlation coefficient with the treatment out-
come: neighborhood activity (ρ = 0.49, local), neighborhood
homogeneity (ρ = 0.42, local), residual function (ρ = 0.38,
local), residual area (ρ = 0.28, global), distance to scotoma
(ρ = −0.24, local), defect area (ρ = −0.24, global), hemi-
anopia (ρ = −0.18, global), border diffuseness (ρ = 0.17,
global), reaction time (ρ = 0.05, global), quadrantanopia
(ρ = 0.04, global), horizontal position (ρ = 0.03, local), ver-
tical position (ρ = −0.01, not significant, local).

B. Treatment Outcome Prediction

After SOM learning, the cluster prototypes (SOM units) can
be labeled according to the majority class among the labels
of the data samples in the respective cluster. Then, novel data
samples can be classified by using k-nearest neighbor (k-NN)
classification. The classification depends on the label of the
SOM unit with the smallest Euclidean distance to the novel
sample. We have chosen k to be equal to 1, as each map unit
is a cluster prototype and represents many data samples. There-
fore, the “winner takes all” of labeled map units is actually a
“majority vote” among labeled samples of the original data dis-
tribution. In order to visualize the prediction outcome and make
it visually comparable with the actual treatment outcome, both
predicted and actual outcomes, which were not part of the learn-
ing set, are shown in Fig. 6 for three randomly chosen patients.
This involves three steps. First, features were extracted from the
baseline charts (see Fig. 6, left column). Second, the location of
each spot in the 12-D feature space was located and projected
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onto the SOM surface. Third, by using the k-NN algorithm with
k = 1, the best matching SOM unit was determined for each
spot, which determines, thereafter, the predicted class (hot or
cold) of the respective spot. The actual treatment outcome [see
(11)] as well as the predicted treatment outcome is shown in
Fig. 6 (second and third columns)

Actual outcome(x, y) =


“hot spot” iff mapBaseline
Detection (x, y)≤ 1

3
∧ mapPost

Detection (x, y)≥ 2
3

“cold spot” iff mapBaseline
Detection (x, y)≤ 1

3
∧ mapPost

Detection (x, y)≥ 1
3


.

(11)

In order to locate the best matching SOM unit for all spots
of each individual chart, the projection of all samples in the
diagnostic chart onto the SOM surface is shown in Fig. 6 (right
column). Almost all samples of the first chart (Fig. 6, top row)
are located at the top right position in the SOM. According
to the component planes, this area is more strongly related to
quadrantanopia, with small residual area and low residual func-
tion. Spots of the second diagnostic chart (Fig. 6, middle row)
are spread widely on the SOM. The top left corner is related
to maximal neighborhood activity and the aggregation in the
map center is related to negative horizontal coordinates, cov-
ering positive and negative vertical coordinates containing low
neighborhood activity, which adequately describes the defective
hemifield on the left. In the third diagnostic chart, the strongest
aggregation of spots is located closely to the hot spot border
within the region of cold spots (Fig. 6, bottom row). This region
is related to negative vertical coordinates with a similarity to
both quadrantanopia and hemianopia containing sharp borders.
These spots belong to the lower left part of the semiquadran-
tanopic diagnostic chart, which also has many defects in the
upper quadrant of the left hemifield.

C. Model Evaluation

To evaluate the performance of the TOPM, k-fold-cross val-
idation was selected [35]. Cross validation is a resampling
method whereby the test dataset is first divided into k disjunctive
sets. Instead of calculating only one evaluation measure, k-fold
cross validation offers a more robust evaluation [36]. Therefore,
the performance measurement procedure is repeated k times us-
ing k − 1 sets (Λ) for SOM learning and the remaining set (Γ)
is used as test dataset. The whole patient database is, therefore,
used for both learning and evaluation. As a result, the average
among all k evaluation measurements is reported. In compari-
son to other methods, cross validation is an unbiased and robust
estimation of the generalization error, but with a higher standard
deviation of the obtained measures [37].

With a tenfold cross-validation procedure, ten classifiers were
trained and then evaluated with the test samples. We used stan-
dard evaluation measures [38] and calculated the average true
positive rate (how many hot spots were classified correctly,
TPR = 44% ± 4.7%) and the false positive rate (how many
cold spots were classified as hot spots, FPR = 6% ± 1.9%)

among all ten classifiers according to

TPR =
TP
P

FPR =
FP
N

(12)

which is based on the number of positive (P , hot spots) and
negative samples (N , cold spots) in Γ, as well as the number
of correctly classified positive samples (TP) and incorrectly
classified negative samples (FP). At first glance, the TPR seems
to be insufficient for a clinical application. However, we have
shown (see Fig. 6) that our approach can identify regions in the
visual field charts with high probability of improvement, even if
about 50% of improved spots in these regions are not correctly
predicted.

The average accuracy (ACC = 84.2% ± 1.4%) measures
the amount of correctly classified samples and was found
to be slightly better than the average baseline accuracy
(ACCbaseline = 81% ± 1.3%), which is the ratio of samples la-
beled with the most frequent class. Both measures were com-
puted as follows (the former uses the number of correctly clas-
sified negative samples, TN):

ACC =
TP + TN
P + N

ACCbaseline =
max(P,N)

P + N
. (13)

Interestingly, in some “unfortunate” classification problems,
the accuracy of established classifiers was even below the base-
line accuracy [39], which is acceptable in the case of unequal
misclassification costs where the prediction performance of the
preferred class is of higher interest than the prediction perfor-
mance of the nonpreferred class. The small difference between
accuracy and baseline accuracy is a result of the strong skewness
of the class distribution, because the learning database contained
7026 cold spots, but only 1689 hot spots. This mismatch in the
ratio between cold and hot spots is not caused by artifacts, but is
a typical event in this field of medicine, because improvement
is rare in comparison to nonimprovement.

D. Receiver Operating Curve Analysis

A measure that is robust to skewed class distributions is the
receiver operating characteristic (ROC) [36], which is widely
used as a standard procedure in performance evaluation of clas-
sifiers in the medical domain [40]. A more robust performance
measure is achieved if a continuous ROC curve is used, and
the area under the ROC curve (AUC = 0.81) is computed for
the classifier [41]. The curve is obtained by using a probabil-
ity score that expresses how strongly the sample belongs to the
predicted class. For each evaluation step, the scores are then
compared with a threshold α increasing from −∞ to +∞. For
each discrete value of α, all samples (i in Γ) were labeled with
respect to their score and α as follows:

labeli =

{
“hot spot” iff α ≥ scorei

“cold spot” iff α < scorei

}
(14)
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Fig. 7. (Top panel) ROC for the TOPM in prognosis of hot and cold spots in
tenfold cross validation. The continuous ROC curve of the TOPM based on the
SOM (solid line in black) was calculated by using 1-nearest neighbor classifica-
tion considering the relative distance to the next hot and cold spot map unit (α,
see text). The performance of any classifier that appears around the diagonal is
equal to random guessing [36]. For comparison of the SOM performance with
alternative methods, the ROC curve was also measured for a SVM (dotted line
in gray) and a PCA model (solid line in gray) with four principal components
applied to 5-nearest neighbor classification. (Bottom panel) In comparison to
tenfold cross validation where the database was divided into ten parts, the spots
in the database were divided into 52 parts with respect to patient affiliation. The
prediction accuracy was determined for all individual charts in leave-one-out
cross validation and plotted against the feature defect area. Diagnostic charts
with a large defect area have higher prognostic accuracy than charts with only
few defect areas.

and the respective rates of correctly labeled positive samples
(TPR) and incorrectly labeled negative samples (FPR) were used
to determine points in the ROC space [36] forming a continuous
curve (see Fig. 7, top panel). For computation of the score,
we propose a simple measure, which is based on the distance
between the sample and the respective nearest map unit with a
positive class (dhot) and the nearest map unit with a negative
class (dcold ). The score of the ith sample is then the relative
distance

scorei =
dcold

dhot + dcold
(15)

which is a value between “0” (indicating that the ith sample is
close to a map unit labeled “cold spot”) and “1” (close to a “hot
spot” map unit). With the features extracted as before, the per-
formance of the SOM approach was compared with two other
classifiers (see Fig. 7, top panel). First, the support vector ma-
chine (SVM) [42], with a 2-D polynomial kernel, showed com-
parable results, which were slightly better (AUC = 0.83, ACC
= 86.8 ± 1.1%, TPR = 45.3 ± 4.5%, FPR = 3.2 ± 0.8%). Sec-
ond, a 5-nearest neighbor classifier, based on the four principal

components from a principal component analysis (PCA) with
varimax rotation, showed the best results (AUC = 0.92, ACC
= 90.0 ± 0.8%, TPR = 68.5 ± 4.0%, FPR = 4.7 ± 1.0%).

E. Clinical Evaluation

The appropriateness of the TOPM to several subclasses of
patients is of clinical relevance. By separating the samples
with respect to patient affiliation, leave-one-out cross validation
showed that the performance is not equal for each subject, result-
ing in a high range of individual performance measures (minimal
accuracy = 29%, maximal accuracy = 98%). A strong correla-
tion between accuracy and the feature Defect Area (ρ = 0.67)
shows (see Fig. 7, bottom panel) that the accuracy of diagnostic
charts, with many defect areas, was better than in charts with
only few defect areas.

IV. DISCUSSION

When prediction models are used in the medical field, care
must be taken because, unlike other classification problems (e.g.,
in the financial domain), the misclassification of patients could
lead to changes in patient’s treatment regimen. Patients could
face serious consequences such as emotional stress (healthy
subjects are misclassified, wrong promises, etc.), inappropriate
treatment, or no treatment at all [41]. It has been suggested that
such an analysis should go beyond the evaluation of statistical
measures, such as the area under the ROC curve. Therefore,
additional evaluations are necessary to assure clinical usefulness
of a TOPM in general [17].

In the case of VRT, misclassification of treatment areas could
result in longer treatment time or reduced treatment efficiency.
There are some guiding principles that should be observed in
assessing the clinical credibility, effectiveness, and evidence of
generality and accuracy of prediction models in medicine [33].
TOPMs should not rely completely on correlation analysis of
features and the treatment outcome [43]. To extend the correla-
tion analysis, we have also used statistical tests to clarify that
the differences between means of features in relation to cold
and hot spots are statistically significant in order to ascertain
that the feature is able to sufficiently separate the set of cold
from the set of hot spots. Domain experts are needed to ver-
ify the appropriateness of the proposed classification principles
using patient samples [44], which was fulfilled in the present
study because VRT-domain experts utilized accepted standards
in VRT research [47]. By close examination of the SOM units,
which determine the class label in prediction, it is possible to
analyze the rules on which the classification is determined, as
required elsewhere [43]. Furthermore, it is recommended to use
a priori knowledge such that the robustness of the prediction
model is enhanced [21]. In this regard, we have used physiologi-
cal knowledge of visual cortex organization and reorganization,
visual cortex anatomy, and the experience of domain experts
to construct appropriate features. Furthermore, the association
between features and treatment outcome should be assessed in
more than one population in order to reduce the risk of spu-
rious associations between feature and class information [45].
In this regard, the feature extraction phase in the present study
was based on two independent studies done within the last ten

Authorized licensed use limited to: Otto-von Guericke-Universit?t. Downloaded on June 11,2010 at 14:53:21 UTC from IEEE Xplore.  Restrictions apply. 



580 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 56, NO. 3, MARCH 2009

years. Further work is required to confirm the clinical bene-
fits of the developed TOPM for VRT because our results need
to be replicated, confirmed, and further documented [43]. This
requires rigorous testing, ideally in a double-blind, randomized,
and placebo-controlled investigation [21].

We have chosen the SOM as core of the prediction model. Its
nonlinearity and self-organization methodology allows a com-
prehensible adaptation to the data distribution. Although other
prediction models may perform better, SOMs simplify the pro-
cess of data mining and the feature selection phase by conve-
niently combining both prediction and data exploration.

V. CONCLUSION

We have presented a TOPM that allows prediction of restora-
tion of vision and plasticity of impaired or blind topographic
areas in the visual field of patients with visual system damage.
The TOPM included features that are associated with the treat-
ment outcome, as assessed by prior studies and described in the
literature of VRT. The features incorporate a priori knowledge
and address several topics in the broad field of vision recovery.
This paper has shown how the SOM is useful for hypothesis
selection when conducting research on perimetric visual field
assessment. Furthermore, our study showed that the classifica-
tion performance is robust and appropriate in predicting areas of
greatest recovery potential in clinical settings. It is our hope that
future studies will compare the results of the most relevant fea-
tures of our model using multiple clinical parameters. This will
be useful not only for further validation of the TOPM, but also
for yielding new insights into mechanisms of vision restoration
and the design of more effective treatment methods.
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