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Abstract. The term precision agriculture refers to the application of state-of-the-
art GPS technology in connection with small-scale, sensor-based treatment of the
crop. This data-driven approach to agriculture poses a number of data mining
problems. One of those is also an obviously important task in agriculture: yield
prediction. Given a precise, geographically annotated data set for a certain field,
can a season’s yield be predicted?

Numerous approaches have been proposed to solving this problem. In the past,
classical regression models for non-spatial data have been used, like regression
trees, neural networks and support vector machines. However, in a cross-validation
learning approach, issues with the assumption of statistical independence of the
data records appear. Therefore, the geographical location of data records should
clearly be considered while employing a regression model. This paper gives a
short overview about the available data, points out the issues with the classical
learning approaches and presents a novel spatial cross-validation technique to
overcome the problems and solve the aforementioned yield prediction task.
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1 Introduction

In recent years, information technology (IT) has become more and more part of our
everyday lives. With data-driven approaches applied in industry and services, improve-
ments in efficiency can be made in almost any part of nowadays’ society. This is
especially true for agriculture, due to the modernization and better affordability of state-
of-the-art GPS technology. A farmer nowadays harvests not only crops but also growing
amounts of data. These data are precise and small-scale – which is essentially why the
combination of GPS, agriculture and data has been termed precision agriculture.

In those agriculture (field) data, often a large amount of information is contained,
yet hidden. This is usually information about the soil and crop properties enabling a
higher operational efficiency – appropriate techniques should therefore be applied to
find this information. This is a common problem for which the term data mining has
been coined. Data mining techniques aim at finding those patterns or information in the
data that are both valuable and interesting to the farmer.

A specific problem commonly occurring is yield prediction. As early into the grow-
ing season as possible, a farmer is interested in knowing how much yield he is about to
expect. The ability to predict yield used to rely on farmers’ long-term knowledge of par-
ticular fields, crops and climate conditions. However, this knowledge can be expected
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to be available in the data collected during normal farming operations throughout the
season. A multitude of sensor data are nowadays collected, measuring a field’s hetero-
geneity. These data are precise, often highly correlated and carry spatial information
which must not be neglected.

Hence, the problem of yield prediction encountered can be treated as a problem of
data mining and, specifically, multi-dimensional regression. This article will serve as
a reference of how to treat a regression problem on spatial data with a combination
of classical regression techniques and a number of novel ideas. This article will fur-
thermore serve as a continuation of [17]: in the previous article, the spatial data were
treated with regression models which do not take the spatial relationships into account.
The current work aims to check the validity of the statistical independence assumption
inherent in classical regression models in conjunction with spatial data. Based upon
the findings, spatial regression will be carried out using a novel clustering idea dur-
ing a cross-validation procedure. The results will be compared to those obtained while
neglecting the spatial relationships inherent in the data sets.

1.1 Research Target

The main research target of this work is to improve and further substantiate the valid-
ity of yield prediction approaches using multi-dimensional regression modeling tech-
niques. Previous work, mainly the regression work presented in [17,21], will be used
as a baseline for this work. Some of the issues of the previous approach will be clearly
pointed out in this article. Nevertheless, this work aims to improve upon existing yield
prediction models and, furthermore, incorporates a generic, yet novel spatial clustering
idea into the process. Therefore, different types of regression techniques will be incor-
porated into a novel spatial cross-validation framework. A comparison of using spatial
vs. non-spatial data sets shall be presented.

1.2 Article Structure

This article will start with a brief introduction into the area of precision agriculture and
a more detailed description of the available data in Section 2. This will be followed
by an outline of the key techniques used in this work, embedded into a data mining
workflow presented in Section 3. The results obtained during the modeling phase will
be presented in Section 4. The article will be completed with a short conclusion in
Section 5, which will also point out further lines of research.

2 Data Description

With the recent advances in technology, ever larger amounts of data are nowadays col-
lected in agriculture during standard farming operations. This section first gives a short
categorization of the data into four classes. Afterwards, the actual available data are
presented. The differences between spatial and non-spatial data are pointed out.
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2.1 Data Categorization

A commonality among data collected in agriculture is that every data record has a spa-
tial location on the field, usually determined via (differential) GPS with a high degree
of precision. These data can roughly be divided into four classes as follows:

Yield Mapping has been a standard approach for many years. Based on maps of pre-
vious years’ yields, recommendations of farming operations for the current season
are determined.

Topography is often considered a valuable feature for data mining in agriculture. The
spatial location of data points (longitude, latitude) is a standard variable to be used
in spatial modeling. Furthermore, variables like elevation, slope and derivatives of
those values can be obtained easily.

Soil Sampling is a highly invasive means of acquiring data about a field. Furthermore,
it is labour-intensive and therefore rather expensive. Obtaining a high resolution of
soil sampling data therefore requires lots of effort. From soil sampling, variables
like organic matter, available minerals, water content etc. can be derived.

Remote Sensing recently has become a rather cheap and high-resolution data source
for data-driven agricultural operations. It usually consists of aerial or satellite imag-
ing using multiple spectral bands at different times into the vegetation period. From
those images, vegetation indices are derived and used for assessing the crop status.

2.2 Available Data

The data available in this work were collected during the growing season of 2007 on
two fields north of Köthen, Germany. The data for the two fields, called F440 and F611,
respectively, were interpolated using kriging [23] to a grid with 10 by 10 meters grid
cell sizes. Each grid cell represents a record with all available information. The fields
grew winter wheat, where nitrogen fertilizer was distributed over three application times
during the growing season.

Overall, for each field there are six input attributes – accompanied by the respective
current year’s yield (2007) as the target attribute. Those attributes will be described
in the following. In total, for the F440 field there are 6446 records, for F611 there
are 4970 records, thereof none with missing values and none with outliers. A short
statistical summary of the fields and variables can be found in Figure 1. In the following
sections, further details about the individual attributes is provided.

2.3 YIELD07

Here, yield is measured in metric tons per hectare ( t
ha ). For the yield ranges for the

respective years and sites, see Figures 1(a) and 1(b).

2.4 Apparent Electric Conductivity – EC25

A non-invasive method to discover and map a field’s heterogeneity is to measure the
soil’s apparent electrical conductivity. It is assumed that the EC25 readings are closely
related to soil properties which would otherwise have to be sampled in a time-consuming
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Fig. 1. Statistical Summary for the two available data sets (F440, F611)
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and expensive manner. Commercial sensors such as the EM-381 are designed for agri-
cultural use and can measure small-scale conductivity to a depth of about 1.5 metres.
There is no possibility of interpreting these sensor data directly in terms of its mean-
ingfulness as yield-influencing factor. But in connection with other site-specific data,
as explained in the rest of this section, there could be coherences. For a more detailed
analysis of this particular sensor, see, e.g. [5]. For the range of EC25 values encountered
in the available data, see Figures 1(a) and 1(b).

2.5 Vegetation – REIP32, REIP49

The red edge inflection point (REIP) is a second derivative value calculated along the
red edge region of the spectrum, which is situated from 680 to 750nm. Dedicated REIP
sensors are used in-season to measure the plants’ reflection in this spectral band. Since
the plants’ chlorophyll content is assumed to highly correlate with the nitrogen avail-
ability (see, e.g. [13]), the REIP value allows for deducing the plants’ state of nutrition
and thus, the previous crop growth. For further information on certain types of sensors
and a more detailed introduction, see [9] or [24]. Plants that have less chlorophyll will
show a lower REIP value as the red edge moves toward the blue part of the spectrum.
On the other hand, plants with more chlorophyll will have higher REIP values as the
red edge moves toward the higher wavelengths. Obviously, later into the growing sea-
son the plants are expected to have a higher chlorophyll content, which can easily be
assessed by visually comparing the REIP values in Figures 1(c) and 1(d). The numbers
in the REIP32 and REIP49 names refer to the growing stage of winter wheat, as defined
in [11].

2.6 Nitrogen Fertilizer – N1, N2, N3

The amount of fertilizer applied to each subfield can be measured easily. Since it is
a variable that can and should be influenced by the farmer, it does not appear in the
preceding categorization. Fertilizer is applied at three points in time into the vegetation
period, which is the standard strategy for most of Northwestern Europe [15]. The ranges
in the data sets can be obtained from Figures 1(a) and 1(b).

2.7 Spatial vs. Non-spatial Data Treatment

According to [7], spatial autocorrelation is the correlation among values of a single
variable strictly attributable to the proximity of those values in geographic space, intro-
ducing a deviation from the independent observations assumption of classical statistics.
Given a spatial data set, spatial autocorrelation can be determined using Moran’s I ([14])
or semivariograms. Spatial autocorrelation appears in such diverse areas as economet-
rics [1], geostatistics [6] and social sciences [10], among others. In practice, it is usually
also known from the data configuration whether spatial autocorrelation is existent. For
further information it is referred to, e.g., [6].

In previous articles using the above data, such as [17,21], the main focus was on
finding a suitable regression model to predict the current year’s yield sufficiently well.

1 Trademark of Geonics Ltd, Ontario, Canada.
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However, it should be noted that the used regression models, such as neural networks
[18,19] or support vector regression [17], among others, usually assume statistical inde-
pendence of the data records. However, with the given geo-tagged data records at hand,
this is clearly not the case, due to (natural) spatial autocorrelation. Therefore, the spatial
relationships between data records have to be taken into account. The following section
further elaborates upon this topic in detail.

3 Regression Techniques on Spatial Data

Based on the findings at the end of the preceding section, this section will present a
novel regression model for data sets which exhibit spatial autocorrelation. In classical
regression models, data records which appear in the training set must not appear in
the test set during a cross-validation learning setup. Due to classical sampling methods
which do not take spatial neighborhoods of data records into account, this assumption
may be rendered invalid when using non-spatial models on spatial data. This leads to
overfitting (overlearning) and underestimates the true prediction error of the regression
model. Therefore, the core issue is to avoid having neighboring or the same samples in
training and testing data subsets during a cross-validation approach.

As should be expected, the data sets F440 and F611 exhibit spatial autocorrelation.
Therefore, classical regression models must either be swapped against different ones
which take spatial relationships into account or may be adapted to accommodate spa-
tial data. In order to keep standard regression modeling techniques such as neural net-
works, support vector regression, bagging, regression trees or random forests as-is, a
meta-approach will be presented in the following. In a nutshell, it replaces the standard
sampling approach of the cross-validation process with an approach that is aware of
spatial relationships.

3.1 From Classical to Spatial Cross-Validation

Traditionally, k-fold cross-validation for regression randomly subdivides a given data
set into two (without validation set) or three parts: a training set, a validation set and a
test set. A ratio of 6:2:2 for these sets is usually assumed appropriate. The regression
model is trained on the training set until the prediction error on the validation set starts
to rise. Once this happens, the training process is stopped and the error on the test set
is reported for this fold. This procedure is repeated k times, with the root mean squared
error (RMSE) often used as a performance measure.

The issue with spatial data is that, due to spatial autocorrelation, almost identical
data records may end up in training and test set, such that the model overfits the data
and underestimates the error. Therefore, one possible solution might be to ensure that
only a very small number (if any) of neighboring and therefore similar samples end up
in training and test subsets. This may be achieved by adapting the sampling procedure
for spatial data. Once this issue has been accommodated, the cross-validation proce-
dure may continue as-is. A rather straightforward approach using the geo-tagged data
is described in the following.
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3.2 Employing Spatial Clustering for Data Sampling

Given the data sets F440 and F611, a spatial clustering procedure can be employed to
subdivide the fields into spatially disjunct clusters or zones. The clustering algorithm
can easily be run on the data map, using the data records’ longitude and latitude. De-
pending on the clustering algorithm parameters, this results in a tesselation map which
does not consider any of the attributes, but only the spatial neighborhood between data
records. A depiction of this clustering process can be found in Figures 2(a) and 2(b).
Standard k-means clustering was used with a setting of k = 20 clusters per field for
demonstration purposes. In analogy to the non-spatial regression treatment of these
data records, now a spatially-aware cross-validation regression problem can be handled
using the k zones of the clustering algorithm as an input for k-fold cross-validation.
Standard models, as described below, can be used straightforwardly, without requiring
changes to the models themselves. The experimental setup and the results are presented
in the following section.

It should be noted that this spatial clustering procedure is a broader definition of the
standard cross-validation setup. This can be seen as follows: when refining the cluster-
ing further, the spatial zones on the field become smaller. The border case is reached
when the field is subdivided into as many clusters as there are data records, i.e. each
data record describes its own cluster. In this special case, the advantages of spatial clus-
tering are lost since no spatial neighborhoods are taken into account in this approach.
Therefore, the number of clusters should be seen as a tradeoff between precision and
statistical validity of the model.

3.3 Regression Techniques

In previous work ([17,21]), numerous regression modeling techniques have been com-
pared on similar data sets to determine which of those modeling techniques works best.
Although those models were run in a non-spatial regression setup, it is assumed that
the relative differences between these models will also hold in a spatial cross-validation
regression setup. In the aforementioned previous work, support vector regression has
been determined as the best modeling technique when comparing the models’ root mean
squared prediction error. Hence, in this work support vector regression will serve as a
benchmark technique against which further models will have to compete. Experiments
are conducted in R [16], a link to the respective scripts is provided in Section 5.

Support Vector Regression. Support Vector Machines (SVMs) are a supervised learn-
ing method discovered by [2]. However, the task here is regression, so the focus is on
support vector regression (SVR) in the following. A more in-depth discussion can be
found in [8]. Given the training set, the goal of SVR is to approximate a linear function
f (x) = 〈w,x〉+ b with w ∈ R

N and b ∈ R. This function minimizes an empirical risk
function defined as

Remp =
1
N

N

∑
i=1

Lε(ŷ− f (x)), (1)

where Lε (ŷ− f (x)) = max((|ξ |− ε),0). |ξ | is the so-called slack variable, which has
mainly been introduced to deal with otherwise infeasible constraints of the optimization
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problem, as has been mentioned in [22]. By using this variable, errors are basically
ignored as long as they are smaller than a properly selected ε . The function here is
called ε-insensitive loss function. Other kinds of functions can be used, some of which
are presented in chapter 5 of [8].

To estimate f (x), a quadratic problem must be solved, of which the dual form, ac-
cording to [12] is as follows:

maxα ,α∗ − 1
2

N

∑
i=1

N

∑
j=1

(αi −α∗
i )(α j −α∗

j )K(xi,x j)− ε
N

∑
i= j

(αi + α∗
i )+

N

∑
i=1

yi(αi −α∗
i ) (2)

with the constraint that ∑N
j=1(αi−α∗

i ) = 0,αi,α∗
i ∈ [0,C]. The regularization parameter

C > 0 determines the tradeoff between the flatness of f (x) and the allowed number of
points with deviations larger than ε . As mentioned in [8], the value of ε is inversely pro-
portional to the number of support vectors. An adequate setting of C and ε is necessary
for a suitable solution to the regression problem.

Furthermore, K(xi,x j) is known as a kernel function which allows to project the
original data into a higher-dimensional feature space where it is much more likely to be
linearly separable. Some of the most popular kernels are radial basis functions (equa-
tion 3) and a polynomial kernel (equation 4):

K(x,xi) = e
− ||x−xi||2

2σ2 (3)

K(x,xi) = (〈x,xi〉+ 1)ρ (4)

The parameters σ and ρ have to be determined appropriately for the SVM to generalize
well. This is usually done experimentally. Once the solution for the above optimization
problem in equation 2 is obtained, the support vectors can be used to construct the
regression function:

f (x) =
N

∑
i=1

(αi −α∗
i )K(x,xi)+ b (5)

In the current experiments, the svm implementation from the e1071 R package has been
used.

Random Forests and Bagging. In previous work ([17]), one of the presented regres-
sion techniques were regression trees. They were shown to be rather successful, albeit
in a non-spatial regression setup. Therefore, this article considers an extension of re-
gression trees: random forests. According to [4], random forests are a combination of
tree predictors such that each tree depends on the values of a random vector sampled in-
dependently and with the same distribution for all trees in the forest. In the version used
here, the random forest is used as a regression technique. Basically, a random forest
is an ensemble method that consists of many regression trees and outputs a combined
result of those trees as a prediction for the target variable. Usually, the generalization
error for forests converges to a limit as the number of trees in the forest becomes large.
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Let the number of training cases be N and the number of variables in the regression
task be M. Then, each tree is constructed using the following steps:

1. A subset with size m of input variables is generated. This subset is used to deter-
mine the decision at a node of the tree; m � M.

2. Take a bootstrap sample for this tree: choose N times with replacement from all N
available training cases. Use the remaining cases to estimate the tree’s regression
error.

3. Randomly choose m variables from which to derive the regression decision at that
node; repeat this for each node of the tree. Calculate the best tree split based on
these m variables from the training set.

It should be noted that each tree is fully grown and not pruned. This is a difference from
normal regression tree construction. Random forests mainly implement the key ideas
from bagging, which is therefore explained in the following.

Bootstrap aggregating (or bagging) has first been described in [3]. It is generally de-
scribed as a method for generating multiple versions of a predictor and using these for
obtaining an aggregate predictor. In the regression case, the prediction outcomes are av-
eraged. Multiple versions of the predictor are constructed by taking bootstrap samples
of the learning set and using these as new learning sets. Bagging is generally consid-
ered useful in regression setups where small changes in the training data set can cause
large perturbations in the predicted target variables. Since random forests are a special
case of bagging where regression trees are used as the internal predictor, both random
forests and bagging should deliver similar results. Both techniques are available in the
R packages randomForest and ipred. Running them on the available data sets should
therefore deliver similar results, since the bagging implementation in the R ipred pack-
age internally uses regression trees for prediction as well. Therefore, the main difference
between random forests and bagging in this article is that both techniques are implicitly
run and reported with different parameters.

Performance Measurement. The performance of the models will be determined using
the root mean squared error (RMSE). For the RMSE, first the difference between an
actual target value ya and the model output value y is computed. This difference is
squared and averaged over all training examples before the root of the mean value is
taken, see equation 6.

RMSE =

√
1
n

n

∑
i= j

(yi − ya,i)2 (6)

4 Results

As laid out in the preceding sections, the main research target of this article is to as-
sess whether existing spatial autocorrelation in the data sets may fail to be captured
in standard, non-spatial regression modeling setups. The approach consists of a simple
comparison between a spatial and a non-spatial setup.
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Fig. 2. k-means clustering on F440 and F611 (the bottom figure has been rotated by 90 degrees)
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Fig. 3. Results for spatial cross-validation on F440/F611 fields, using 50 clusters and support
vector regression
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non-spatial setup. The non-spatial setup is similar to the one presented in [17], al-
though different data sets are used. A standard cross-validation procedure is per-
formed, where k is the number of folds. Support vector machines, random forests
and bagging are trained on the training set. The squared errors on the test set are
averaged and the square root is taken. The resulting value is reported in Table 1.

spatial setup. Since the amount of research effort into spatial data sets is rather sparse
when compared to this special setup, a simple, yet effective generic approach has
been developed. The spatial data set is clustered into k clusters using the k-means
algorithm (see Figure 2). This non-overlapping partitioning of the data set is then
used in a spatial cross-validation setup in a straightforward way. This ensures that
the number of neighboring data points (which are very similar due to spatial auto-
correlation) in training and test sets remains small. The root mean squared error is
computed similarly to the non-spatial setup above and may optionally be displayed
(see Figure 3).

The results in Table 1 confirm that the spatial autocorrelation inherent in the data set
leads classical, non-spatial regression modeling setups to a substantial underestimation
of the prediction error. This outcome is consistent throughout the results, regardless of
the used technique and regardless of the parameters.

Furthermore, it could be shown that for these particular data sets, random forests
or bagging yield more precise predictions than support vector regression. However,
the standard settings of the respective R toolboxes were used in both the spatial and
the non-spatial setup, therefore the difference between these setups will remain simi-
lar regardless of parameter changes. Nevertheless, changes to model parameters might
slightly change the outcome of the prediction accuracy and the ranking of the models in
terms of root mean squared error. The drawback is that parameter tuning via grid search
easily extends computation times by orders of magnitude.

Moreover, the spatial setup can be easily set to emulate the non-spatial setup: set k
to be the number of data records in the data set. Therefore the larger the parameter k is

Table 1. Results of running different setups on the data sets F440 and F611; comparison of
spatial vs. non-spatial treatment of data sets; root mean squared error is shown, averaged over
clusters/folds; k is either the number of clusters in the spatial setup or the number of folds in the
non-spatial setup

F440 F611
k spatial non-spatial spatial non-spatial

Support Vector Regression 10 1.06 0.54 0.73 0.40
20 1.00 0.54 0.71 0.40
50 0.91 0.53 0.67 0.38

Random Forest 10 0.99 0.50 0.65 0.41
20 0.92 0.50 0.64 0.41
50 0.85 0.48 0.63 0.39

Bagging 10 1.09 0.59 0.66 0.42
20 1.01 0.59 0.66 0.42
50 0.94 0.58 0.65 0.41
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set, the smaller the difference between the spatial and the non-spatial setup should be.
This assumption also holds true for almost all of the obtained results.

5 Conclusions and Future Work

This article presented a central data mining task: regression. Based on two data sets from
precision agriculture, a continuation and improvement over previous work ([17,21])
could be achieved. The difference between spatial data and non-spatial data was pointed
out. The implications of spatial autocorrelation in these data sets were mentioned. From
a statistical and machine learning point of view, neighboring data records in a spatially
autocorrelated data sets should not end up in training and test sets since this leads to
a considerable underestimation of the prediction error, possibly regardless of the used
regression model.

It can be concluded that it is indeed important to closely consider spatial relationships
inherent in the data sets. As a suggestion, the following steps should be taken: for those
data, the spatial autocorrelation should be determined. If spatial autocorrelation exists,
standard regression models must be adapted to the spatial case. A straightforward and
illustrative approach using simple k-means clustering has been described in this article.

5.1 Future Work

Despite having improved and validated upon the yield prediction task, the data sets
carry further information. Two rather interesting task are variable importance and man-
agement zones.

The first refers to the question which of the variables is actually contributing most
to the yield prediction task. This has practical implications for the farmers and sensor-
producing companies. A first non-spatial approach has been presented in [20] as a stan-
dard feature selection approach, which should accommodate the spatial relationships
in future implementations. The bagging approach presented in this article might be
considered.

The second refers to discovering interesting zones on the (heterogeneous) field which
should be managed differently from each other. This is a classical data mining question
where the k-means approach used in this article is likely to be considered.

Further material, including the R scripts for creating the figures in this article and
computing the results, can be found at http://research.georgruss.de/
?cat=24.
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