Detection of faulty products using data mining

M. A. Karim®', G. Russ’, and A. Islam°
“School of Engineering System
Queensland University of technology, QLD 4001
YFaculty of Informatics
University of Magdeburg, Germany
‘Build and Integration Engineering, Nokia Devices
Hoimotie 19, 00380 Helsinki, Finland

Abstract

The manufacturing process is complex due to the large
number of processes, diverse equipment set and
nonlinear process flows. Manufacturers constantly
Jace yield and quality problems as they constantly
redesign their processes for the rapid introduction of
new products and adoption of new process
technologies. Solving product yield and quality
problems in a manufacturing process is becoming
increasingly difficult. There are various types of
Jailures and their causes have complex multi-factor
“interrelationships. High innovation speed forced
today's manufacturers to find failure causes quickly by
examining the historical manufacturing data. Data
mining offers tools for quick discovery of relationships,
patterns, and knowledge in large databases. This has
been applied to many fields such as biological
technology, financial analysis, medical information,
etc. Application of data mining to manufacturing is
relatively limited mainly because of complexity of
manufacturing data. Growing self-organizing map
(GSOM) algorithm has been proven to be an efficient
algorithm to analyze wunsupervised DNA data.
However, it produced unsatisfactory clustering when
used on some manufacturing data. Moreover, there
was no benchmark to monitor improvement in
clustering. In this study a method has been proposed to
evaluate quality of the clusters produced by GSOM
and to remove insignificant variables from the dataset.
With the proposed modifications, significant
improvement in unsupervised clustering was achieved
with complex manufacturing data. Results show that

the proposed method is able to effectively differentiate
good and faulty products.

1. Introduction

Manufacturing databases usually comprise of process
control, process step, and quality control data. In many
applications data are automatically generated by
sensors and therefore the number of inputs can be very
large. This large volume of data coupled with quicker
time to market expectations is making finding and
resolving problems quickly an overwhelming task. The
analysis of such a large volume of data, interpreting
results, and implementing design improvements is
computationally intensive and time-consuming. A
high priority goal for today’s manufacturing is finding
the most probable causative factor(s) that discriminate
between low yield and high yield products by quickly
examining the historical manufacturing data.

Engineers often perform a series of experiments to
identify and resolve potential problems with the
design. Traditional techniques of dealing with quality
problems are the use of statistical process control
(SPC) and design of experiments (DOE). However,
these techniques fail to extract underlying features
from complex data [1]. Moreover, these methods are
highly time-consuming. In order to decrease design
cycles and the time-to-market new products, it is
important to have a method for analyzing
manufacturing data quickly and efficiently, predicting
the effects of design changes and determining the best
design parameters. Effective product data management
has a significant influence on product quality
improvement [2, 3]. However, traditional techniques
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are incapable of dealing with large volumes of
manufacturing data [4].

Advances in the data mining techniques enbanced
automatic knowledge discovery as well as extraction of
useful information from large volumes of data.
Literature shows that the dynamic GSOM is a
powerful tool for unsupervised data analysis [5). In
this study, a modified GSOM is used to detect faulty
products from manufacturing data.  Several
modifications are proposed in order to reduce noisy
data and to improve clustering quality.

2. Unsupervised Clusiering Method

Cluster analysis is an unsupervised data mining
technique that processes data that do not have known
class labels, or where the analyst opts not to use them.
Data within a cluster are highly similar to one another,
but are very dissimilar to data in other clusters. Each
cluster can be treated as a class of data, on which class
or concept characterisation and discrimination can be
performed.

The neural network approach to data mining has
gained popularity due to the facts that most real world
data have complex decision boundaries and contain a
substantial amount of noise and the neural networks
are robust against noise. A popular and well-accepted
self-organising method of neural network analysis is
self-organising maps (SOMs) [6]. A SOM with two-
dimensional constraints can provide a visualisation of
high-dimensional data by projecting it into a two
dimensional network. However, the two-dimensional
SOMs are rectangular grids of neurons that have
predefined sizes and are specified by widths and
heights. This can potentially hinder the real
representation of input space topology [7].

Consequently, several modifications to SOM have
been proposed to overcome the problem of predefined
grids. One of the most recent variants, called the
growing self-organising map (GSOM) was proposed to
let the algorithm determine the size of the feature map
[7-9]. A significant difference between these two
algorithms is that SOM is not able to grow but GSOM
grows according to its own growing criterion. Hsu et
al. [9], proposed a hierarchical clustering algorithm
using multiple layers of GSOM that automatically
suggests an appropriate number of clusters that are
present in the data.

2.1, GSOM algorithm

GSOM is an unsupervised learing algorithm and the
basic idea is to:
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1. Represent high-dimensional data in a low-
dimensional form without loosing any of the
important features of the data.

Organise data on the basis of similarity by
grouping objects that are geometrically close
to each other.

This makes GSOM popular for visualizing high-
dimensional data. Though computationally more
expensive than other unsupervised methods, it has
proved to be extremely useful with high-dimensional
and complex input data.

A GSOM consists of neurons that are usually
arranged in a two-dimensional grid with rectangular or
hexagonal topology. Each neuron is represented by an

n-dimensional weight vector p, =[m,,m,,......,m,]>

where, n is equal to the respective dimension of the
input vectors. The neurons are connected to adjacent
neurons by means of neighbourhood relations.

The GSOM utilizes a competitive learning method
[9]. When a training sample is given to the network, its
distance to all weight vectors is computed. The best-
matching unit (BMU) or winning neuron is the unit
whose weight vector possesses greatest similarity with
respect to the input sample x. The distance measure
used to define the similarity is typically Euclidean
distance. Thus for each input vector X, there exists a
winning neuron my with minimum Euclidian distance
to input X, such that

fe-my|=minfr-mf} 0

This is referred to as the competitive learning part
of the learning process, since all neurons compete to be
the winner. Having found the BMU, the weight vectors
of the GSOM are updated. The weight vectors of the
BMU and its topological neighbours are moved closer
to the input vector from the input space. This
phenomenon is illustrated in Figure 1. The magnitude
of the change decreases with time and is smaller for
neurons physically far away from the BMU.

The update rule for changing the respective weight
vectors of unit i is:

m,(2+1) = m, () + a(t)h, (O)[x(t) - m,(t)]
)
where, t denotes the time step, x(t) is the input vector

chosen from the input data set at time t, a(t) is a
monotonically decreasing learning rate, and hy(t) the



neighbourhood kernel around the winner unit at time t.
The neighbourhood kemel defines the region of
influence that the input sample has on the GSOM. This
is called cooperative learning.

Figure 1: Updating the BMU and its neighbors towards
the input sample [10]

There are many possible types of neighbourhood
functions, the simplest and most commonly used are
the following [10]:

¢ Bubble: In this simplest form it is one for all
neurons close enough to BMU and zero for

others
Ermﬁz

LCNU
e Gaussian: ¢ 20

where, 1, and r; are positions of the winning neuron b
and i respectively, and o(t) is the neighborhood radius.
The learning rule makes the weights of the winning
neuron and its neighbours more similar to the input x.

Regardless of the functional form, the neighbourhood
function shrinks with time. For each input vector this
process is repeated for large number of cycles. The
final network associates the output nodes with groups
or patterns in the input data set. During the training
process a map is built and the neural network organises
itself using a competitive process. As the weights of
the whole neighborhood are moved in the same
direction during the training phase, similar items tend
to excite adjacent neurons. Therefore, GSOM forms a
semantic map where similar samples are mapped close
together and dissimilar apart. An analyst can then
evaluate the map with the knowledge of input dataset.
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The characteristic feature distinguishing neural
maps from other neural network paradigms and regular
vector quantisers is  the  preservation  of
neighbourhoods. This desirable feature obviously
depends on the choice of the output topology. The
proper dimensionality of the output space is usually
not known a priori, but has to be specified prior to
learning in the GSOM algorithm .

GSOM starts with a minimal number of nodes
(usually four) and grows new nodes on the boundary
based on a heuristic. By using the value called the
spread factor (SF), the data analyst has the ability to
control the growth of the GSOM. A parameter of
growth known as, the growth threshold (GT) is defined
as [9]:

GT=-D % In (SF) 3)

where, D is the dimensionality of data and SF is the
user defined spread factor that takes values between 0
and 1. An SF value close to 0 represents minimum
growth and close to 1 represents maximum growth.
Note that the outer boundaries of the spread factor (0
and 1) cannot be included since 1n(0) = undefined, and
In(1) = 0 renders the growth threshold meaningless.

The algorithm first identifies the winning node.
Then an accumulated error E (difference between input
vector and weight) of the winning node is updated by
the following rule:

E@t+1)=E(t)+|x—m)| @

where, x is the input vector and m,, is the weight vector
of the winning node. If the winning node is the
boundary node and E exceeds GT, growing is initiated
on that node to fill the surrounding unoccupied spaces
of the lattice. If E of the winning node exceeds GT but
the winning node is not a boundary node, then F is
propagated outwards to other neighboring nodes.
Weights of the new nodes will be initialized according
to the following equation [3]:
My = 2Myinner — Mopposite (5 )

where moppsie T€presents the weight of the node
topologically opposite to the new node. If there are no
topologically opposite nodes, weights of the new
nodes will be calculated according to the following
equation:

(6)

where, Momer1 and mype; are weights of the nodes
nearest to the new node. For hexagonal topology,

Mnew = Myinner T Mogher) ~ Mogherz



RN

equation (6) is applicable as there will always be a
neighbor of the winning node that is topologically on
the opposite side of the new mnode, Growing
phenomenon in GSOM is illustrated in Figure 2. New
nodes are inserted around the high ‘error node’ (node
‘Error’ in Figure 2), with accumulated error exceeding
the predefined growth threshold.

NewO

(@ ®) ©

Figure 2: Growth in GSOM: (a) initial state (b) two
new nodes and (c) three new nodes

2.2, Clustering guality improvement

Main objective of GSOM is to transform high-
dimensional data in a low-dimensional cluster maps.
However, with complex datasets, it may not be
straightforward to obtain a good clustering. It is more
applicable for manufacturing datasets, which are
considered as complex due to the large number of

processes, diverse equipment set, and nonlinear

process flows. Manufacturing datasets often comprise
of hundreds of process control, process step and
quality control data. It might be necessary to change
different variables and monitor the change of ‘quality’
of the cluster. This study proposes a clustering quality
(CQ) measure, as a benchmark to evaluate the changes
in clustering quality with different parameter changes.

Mathematically, clustering quality can be expressed as:

& O b 8
N _n n N ,n
CO= Zmax —*_L 0 +Zmax e * L Q

M

where, B is total number of faulty products, G is total
number of good products, N is total number products
(B+G), b; is number of faulty products in neuron 7, g;
is number of good products in neuron i, and n; =
number of products in neuron i (b; + g;).

A CQ of 1 would mean a perfect separation of good
and faulty products and a 0 would mean no separation
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at all. This proposed CQ takes the complete cluster
map into account and can be generated automatically
as an objective quantifier of the programme to separate
good and faulty products from the data provided

Many datasets (manufacturing databases for
example) are large and complex and may have
substantial amounts of noise. Noise reduction from the
data is one of the primary conditions for obtaining
good clustering. Some datasets may contain many
categorical variables, which are comprised of letters or
a combination of numbers and letters. These
categorical data should be transformed into numerical
data to allow their use in data mining programmes.
One of the ways to transform categorical data to
numerical data is to use the binary convention.

Investigation of sample manufacturing datasets has
revealed that there are many categorical variables that
do not have any affect on separating good and faulty
products. For example, a categorical variable may have
an equal distribution among good and faulty products.
These variables, when expanded, only add noise to the
dataset. To filter out these unnecessary categorical
variables, a method is proposed to remove them from
the dataset. Mathematically the constraint can be
expressed as:

FI:(ﬁi&--{-}‘LJSa (8)

Ng NI

where, FI = Filtration index, Xj; = number of good
products having a particular categorical variable , Xjr=
number of faulty products having a particular
categorical variable, N, = number of good products in
the sample, Ny = number of faulty products in the
sample, o = user defined constraint limit.

If the Filtration Index for a variable is close to
zero, it can be considered that the variable is equally
distributed among good and faulty products and hence,
should not be considered for analysis. For example, if
a dataset has 50 good products and 25 faulty products
and among them 10 good products and 5 faulty
products have the same variable, then FI will be
[(10/50)-(5/25)] = As the variable is similarly
distributed among the good and faulty products, it will
have no effect on clustering. However, it is not
expected that a variable would have FI value exactly
zero. In practice, the user has to define the value (or
range of values) for a depending on the characteristics
of the dataset. Although the FI has been proposed for
categorical variables, it can similarly be used for
numerical variables.

An improved GSOM process taking clustering
quality and FI into consideration is described below:



1. Inmitialize the weight vectors of the starting
nodes (usually four) with random numbers
between Q and 1.

2. Calculate the growth threshold (GT) using
equation (3)

3. Determine the winning neuron using equation

().

Update the weight vectors of the

neighbourhood using equation (2).

5. Calculate error values and if the error of node
i is greater than GT, grow nodes ifiisa
boundary node. Distribute weights to -
peighbors if § is a non-boundary node.

6. Initialize the new node weight vectors to
match the neighboring node weights.

7. Repeat steps 3 — 6 until all inputs have been
presented and node growth is reduced to a
minimum Jevel.

8. Reduce learning rate and fix a small starting
neighborhood.

9. Find winner and adapt the weights of the
winner and neighbors in the same way as in
growing phase.

The GSOM process with clustering quality
improvement described above can be summarized as
follows. Primary or basic data is first pre-processed.
Then the dataset is filtered to remove insensitive
variables. If there are some categorical data in the
dataset, these are converted to numerical values Data
are then normalized to feed ‘into the GSOM. The
quality of the cluster maps are then evaluated using
equation (7). If the clustering quality is not acceptable,
the dataset is further refined by removing insensitive
data, Finally the cluster maps are analyzed and
interpreted with the knowledge of the dataset used.

3. Results and Discussions

The method proposed has been applied to a complex
manufacturing datasets. The results demonstrate the
effectiveness of the methodology. Details of the
simulation results are described in the following
sections.

Recorded manufacturing process data can be used
to analyze the performance of a process. However, it is
difficult to find the causes of any abnormal output or
the factors resulting in lower yield rates [11]. To
determine whether GSOM could deal with a complex
manufacturing dataset, a simulation has been run with
a large dataset obtained from Motorola USA. The
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quality problem of the Motorola wafer fabrication
process is described in reference {1].

In the context of analysis of manufacturing quality
problems, the focus involves two main aspects -
separation of good and faulty products and identifying
the reason for yield failure, The present study focuses
on the first aspect. The challenge is not solely in
clustering, but also to obtain a meaningful and
adequate number of clusters. With meaningful clusters,
grouped in appropriate numbers, identification of the
reasons that contribute significantly to the
differentiation of clusters should become a simpler
task.

The dataset is the historical wafer data collected for
2500 wafers over a 2-month period. The input database
measured 133 parameters by 16,381 entries organized

" into an Excel file. The data consisted of wafer probe

112

data of 39 wafer probe functional tests, process control
data (59 numerical electrical PC measurements probed
at 8 sites per wafer) and process step data such as
material vendor/lot, wafer boat position, etc. A sample
of the dataset is shown in Table 1. The second column
in the table is the product ID, the 3™ column is the
product reference number, and columns C1 to X133
are measured parameters. In the original dataset, there
are 59 ‘C’ columms (C1-C59), 38 ‘K’ columns (K60-
K98), and 34 ‘X’ columns (X99-X133). The reference
number in the 3™ column identifies which product is
good and which product is faulty. Reference numbers
above 8750 indicate good products and below B750
indicate faulty product.

As shown in Table 1, there are many categorical
variables especially in the X-columms. This dataset
must be converted into a suitable format to use in
GSOM. Pre-processing of data includes removal of
outliers, transformation of categorical data into
numerical values, and normalization. It was found that
there are some excessively large values in the dataset
and if these are not removed, most of the values will
become zero after normalization. After removing the
outliers, the categorical data are transformed into
binary. Considering the complexity of the dataset,
about one quarter of the entries (4000) was considered
for simulation purposes.




No NAME REF| I c2 *°*® | K60 | K61 |ews| X132 X133
1 | 7546040 12 1 |9628 | 1.00E-09 | 2.21E-02 | eee | 33 | 18 |eee | R2793 | Doc-18-95
2 | 1546040 12 2 {9628 |-1.33E-09] 2.39E-02 | see [ 33 | 18 |eee|R2793 | Dec-18-95
3 | J546040_12_3 {9628 | 8.33E-10 | 231E-02| eee | 33 | 18 |eee|R2793 | Dec-18-95
4 | 1546040 12_4 |9628 |-4.77E-10) 236E-02 | see | 33 | 18 |eee | R2793 | Dec-18-95
» [ ] * - L ] * L] . * L ] .

- L] L ] [ ] L] . L] * L] [ .

16381| F606617 21 5 [9584 | -2.69E-08| 2.23E-02 | eee | 19 | 18 [oee| R285 | Feb-2696

Table 1. Motorola Wafer Manufacturing Data showing dimensionality and layout)

SF(IFs 0) 0.1 0.5 0.7 0.8 0.9 0.95
CQ 0.25 0.40 0.45 0.49 051 0.52
IF (SF=0.95) [<0.05 [<0.10 [<012 - [<013 [<0.14 |<0.15
CQ 0.71 0.76 0.78 0.79 0.80 0.81

Table 2. Improvement of Clustering Quality Changing SF and IF

Simulation was run at SF 0.1 first but a very poor
(0.25) CQ was obtained. Clustering quality was
improved with higher SF but the maximum CQ was
only 0.52, obtained at an SF of 0.95. It is thought that
the large number of attributes imposed unnecessary
noise in the dataset. It may be necessary and of great
insight to study the effect of removing several

attributes from the input dataset and to check the -

impact on the generated maps.

The categorical data from the dataset were
reduced using equation (8). First using the constraint
IF < 0.05, 163 categorical variables were deleted and
the simulation was rerun. A significantly higher CQ of
0.71 was achieved. To test further, more categorical
variables were deleted. Using IF £ 0.15 a CQ of 0.81
was achieved. As further deletion of variables did not
produce any more significant improvement, no further
deletion was done. Moreover, if many variables are
deleted, some important features may be lost. A
summary of the results is presented in

Table 2 and a cluster map of SF=0.95 and IF <
0.15 is presented in Figure 3.

Although higher clustering quality is desired, it
may not be possible to obtain high CQ with complex
manufacturing data as 100% separation of all good and
faulty products is not possible. For example, consider
that the desired dimension of a product is 10mm. If the
dimension of the finished product is 11mm it will be
considered a failure and if the dimension of final
product is 15mm it is also a failure but certainly
different to the previous failure. It cannot be expected
that all products with a dimension 10mm (plus
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tolerance) be clustered in one group and the rest will
be grouped in another cluster. There will certainly be
some mixing. In practice, some clusters with 100%
good and faulty. products and the rest of the clusters
with majority either good or faulty products are
expected. In this study some clusters with 100% good
and faulty products were obtained and other clusters
either contained majority of good products or faulty
products.

4, Conclusions

The proposed methodology is a
contribution
to the data mining techniques available, especially in
dealing with complex manufacturing datasets. The
GSOM algorithm has been proven to be an efficient
algorithm to analyze unsupervised DNA data.
However, it produced unsatisfactory clustering when
used on manufacturing data. Moreover, there was no
benchmark to monitor improvement in clustering. The
present study has proposed methods to evaluate quality
of the clusters produced by GSOM and to remove
insignificant variables from the dataset. With the
proposed modifications, significant improvement in
unsupervised clustering was achieved with simple as
well as complex manufacturing data. Possible further
improvement in cluster analysis may be achieved by
applying evolutionary optimization algorithms.

For manufacturing data, the objective is not
limited to finding the separation of good and faulty

significant




products. The main objective is to find the underlying
reason for poor yield. To discover this, it is necessary

100% good product
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Russ, G., Karim, M. A, Islam, A, Hsu,A. L.,
Halgamuge, S. K., Smith, A. J. R, Kruse, R_: Detection
of Faulty Semiconductor Wafers using Dynamic

ng Map. IEEE Tencen,

2005).

100% Faulty product

Figure 3. Cluster Map of Motorola Wafer Data (SF: 0.95 and IF=< 0.15)

to create clusters of good and faulty products, as has
been done in this study. The technique is being
extended to model the failure causes of the lower
yielding products.
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