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Abstract Although there is no exact definition for the term cluster, in the 2D case,
it is fairly easy for human beings to decide which objects belong together. For
machines on the other hand, it is hard to determine which objects form a cluster.
Depending on the problem, the success of a clustering algorithm depends on the idea
of their creators about what a cluster should be. Likewise, cach clustering algorithm
comprises a characteristic idea of the term cluster. For example the fuzzy c-means
algorithm (Kruse et al., Advances in Fuzzy Clustering and Its Applications, Wiley,
New York, 2007, pp. 3-30; Hoppner et al.. Fuzzy Clustering, Wiley, Chichester,
1999) tends to find spherical clusters with equal numbers of objects. Noise cluster-
ing (Rehm ct al., Soft Computing — A Fusion of Foundations, Methodologies and
Applications 11(5):489-494) focuses on finding spherical clusters of user-defined
diameter.

In this paper, we present an extension to noise clustering that tries to maximize
the distances between prototypes. For that purpose, the prototypes behave like repul-
sive magnets that have an inertia depending on their sum of membership values.
Using this repulsive extension, it is possible to prevent that groups of objects are
divided into more than one cluster. Due to the repulsion and inertia, we show that
it is possible to determine the number and approximate position of clusters in a
data set.

Keywords Air traffic management - Fuzzy c-Means - Noise clustering - Repulsive

prototypes.

1 Introduction

Prototype-based clustering algorithms have one thing in common: they require
knowledge about the expected number of data clusters in advance. Even if this infor-
mation is at hand, initialization of the prototypes has still a strong influence on the
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quality of the clustering result. So far, the problem of finding the correct number of
clusters and a good initialization for the prototypes cannot be solved analytically,
hence, experts or heuristics are needed.

In this paper, we present a method that makes use of available information, such
as the expected size and separation of clusters in a data set, to gain knowledge about
the number of clusters and their approximate position. This is done by using repul-
sive prototypes. The repulsive force prevents that prototypes come close to each
other which leads to well separated prototypes. The result can be used to initialize
(non-repulsive) clustering algorithms.

This paper is structured in four parts. The next part contains a briel description
of fuzzy c-means and noise clustering, which will be used to introduce repulsive
prototypes later (Bezdek, 1981; Dave & Krishnapuram, 1997). In Sect. 3, we will
introduce the mathematical background and the usage of repulsive prototypes. In
Sect. 4 we will present results on a practical application. Finally. we conclude with
Sect. 5.

2 Fuzzy c-Means and Noise Clustering

Repulsive prototypes extend the concept of fuzzy c-means (FCM) and derivatives,
e.g., noise clustering (NC). Although both algorithms are very well known, some
mathematical details are needed in the next section, which makes it necessary to
repeat them at this point. Let X C V be a finite set of data objects of a vec-
tor space V with |X| = n. The clusters are represented by a set of prototypes
B = {p..... Bmt C V which can be initialized randomly. Only the number of
prototypes m must be known in advance. Let | < @ € R be the fuzzifier and
U e R™" be the partition matrix with «;; € [0. 1] and Vj Y7 uy; = L.
And finally, let d : V x V — R be a distance function with its abbreviation
d,‘,’ = (1([‘3,‘,.\;\/‘).

Fuzzy c-means is defined as an objective function J that is to be minimized

m H

J(X.U.B)=) "% ud;.
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The minimization of J is done by iteratively updating the members of U and
B and is computed using a Lagrange extension to hold the side constraint of
o uy = 1. The iteration steps are denoted by a time variable 7 € N denoting
¢t == 0 as the initialization step:
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For noise clustering, an additional cluster is specified which is represented by a
virtual prototype By which has no location in V. Instead, it has a constant 0 < v € R
distance to all data objects: ¥V : dip = d(Bo.x;) = v which is called noise dis-
tance. By is not represented as a member of V', and so, it is not updated during the
ileration process. The noise prototype is introduced to assign higher membership
degrees to the noise cluster for all data objects whose distance (o regular prototypes
exceeds the noise distance. This favors regular prototypes to be better placed in the
center of data clusters without being heavily attracted by noise data.

3 Repulsive Prototypes

Unfortunately, noise clustering as described above, has certain disadvantages when
itcomes to separation of clusters. It is quite likely that two prototypes end up in the
same data cluster, leaving one or more clusters without any prototype. To prevent
this, a penalty term can be added to the objective function to push prototypes further
away from each other. This works fine under certain circumstances, but it offers
only an indirect influence on the repulsion behavior of the prototypes. An alternative
procedure is to change the update function of the prototypes directly. Thereby, the
prototypes’ behavior can be easily controlled, however, at the expense of the fact,
that the algorithm cannot be based on an objective function anymore.

The repulsion among the prototypes is calculated pairwise for each pair of proto-
types. The strength of the repulsion depends on the distance between two prototypes
and on the sum of membership values to the respective prototypes. The modified
update function for repulsive prototypes is defined as
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The first term (A) is identical to (2) and describes the impact of the data objects to
a prototype while the rest of the formula describes the repulsion. Because the repul-
sion is computed for each pair of prototypes, the repulsion is calculated between
prototype i and every other prototype. The term (B) is a unified vector for the
direction of the repulsion. The term (C) takes the influence of the data objects to
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the respective prototype into account with ! = Z;:] ufj. Imagine there are two
prototypes in one data cluster. If they would push each other away with equal force,
they would both be pushed out of the cluster. This is not the desired result, since one
of them should remain inside. In crisp words: the term (C') gives that prototy pe more
force, to which more data objects are assigned. In fuzzy terms, the prototype with
the larger sum of membership values is preferred in the pairwise repulsion process.
The last term (D) takes the distance between prototypes into account. The function
¢ : R — [0, 1] should be monotonically decreasing and continuous. In principle,
every function that holds these constraints is valid, but here, we will consider one
family of functions in particular, which is described in the next paragraph. Consider,
that the value inside the sum is between 0 and 1. If the data objects are not scaled
to a unified space, the influence of the repulsion might be too weak to counteract
the attraction of the data objects. The parameter ¢ handles the balance between the
attraction of the data objects and the repulsion among prototypes. If the data set is
standardized, ¢ can be set to 1.

Practical tests have shown that a function of the family ¢(x) = ——- is not
suitable for the repulsion process. Instead, the logistic function turned out (o be
very feasible. This is why we decided to use the following variation of the logistic
function:

|

The value o is the distance at which the function ¢ has the value 0.5. The parame-
ter a describes the gradient of ¢ at the point o. The problem is, that such a parameter
a is not very intuitive. Therefore, the definition of ¢ is changed to a formula that
holds the two constraints: (o) = 0.5and ¢(y) = o withy > oanda € (0,0.5).In
words: the repulsion should have half its strength at a distance of ¢ and should have
almost no effect at a distance of y. Mathematically, “almost no effect” is described
by @, so that a fixed value of ¢ = 0.05 might be useful. With these constraints, the
parameter ¢ can be computed by

(p(,\‘) e
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Using the parameter o and y (leaving « at a fix value), it is easy and intuitive to
control the repulsion. In Fig. 1, ¢ is plotted for several sets of parameters. Applying
noise clustering with repulsive prototypes, it has proven useful to set 0 = 0.9y,
o = 1.8v and & = 0.05 to gain well-separated clusters. Depending on the inherent
data structure, appropriate values should be assigned to these parameters. v can be
interpreted as the maximal spacial extension of a cluster while o and y influence the
minimal distance between the centers of clusters.

Tests have shown that the impact of the attracting conventional FCM-component
and the repulsive component in the update equation need to be balanced appropri-
ately. Otherwise, due to the FCM-component, prototypes will be attracted to the data
clusters in one iteration followed be a strong repulsion in the next. The algorithms
behavior can be described best as “nervous”. To prevent this, it is necessary to define
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Fig. 1 Repulsion function with several parameters for y

arelatively small learning rate § < (0, ], such as § = 0.1. Then, the update formula
of the prototypes is expanded to

Bt = s 4 (1 -8B

Sometimes, the final setup of the prototypes is not useful to generate a compre-
hensible partition of the data objects, because the repulsion influences the position
of the prototypes so that they cannot be seen as representatives of the clusters
any more. For this reason, we do not consider clustering with repulsive pro-
totypes as an alternative to fuzzy c-means or other prototype-based clustering
algorithms (Gath & Geva, 1989; Gustafson & Kessel, 1979). But the repulsion has
proven very useful to solve the initially mentioned problem of finding the number
and approximate position of the clusters.

Noise clustering, extended with repulsive prototypes is still a prototype-based
algorithm that needs the number of prototypes to be known in advance. Since the
algorithm should only be used for initialization purposes, it is not necessary to have
exactly the same number of prototypes as there are clusters in a data set. Since
this is the case, it is possible to overestimate the number of clusters. In fact, it is
useful to overestimate the number of clusters with two or three times the prototypes
as there are expected clusters in the data set. This way, it is almost guaranteed,
that each cluster is found by at least one prototype. Due to the repulsive behavior
of the prototypes and assuming the parameters are chosen correctly, each cluster
will hold only one prototype. Accordingly, many prototypes are floating outside of
clusters and might stabilize on some noise data objects. Due to the term (C) in (3), a
prototype floating outside of a cluster is not able to chase away a prototype already
inside of this cluster. Even if there are two prototypes initialized inside of a cluster,
a small unbalance is sufficient that either of the prototypes will push out the other.

After running noise clustering with repulsive prototypes and an overestimated
number of clusters, a simple test T : B — {1,0} can be used to determine if a
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prototype is considered to be inside a cluster or not. This test can depend on the
specific clustering task. A very simple test would be to consider a minimal sum of
membership values u,,;,, of all data objects towards one prototype:

Ly
gy = 3 | ot > i
2 0 . otherwise.

Finally, the position of all positively tested prototypes can be used to initialize
another prototype-based clustering algorithm such as fuzzy c-means.

Experiments have shown, that if there is little or even no noise, prototypes that
are outside of data clusters do not stop moving. The reason is, that they are strongly
influenced even by small changes of other prototypes. Therefore, the usual approach
to terminate the algorithm, i.e., when the difference in the membership matrix from
one iteration step to the next one is small (JU'™" — U'|| < ), is not applicable.
A simple solution for this problem is to terminate the algorithm after a pnumusly
defined number of ite ]
prototype positions for proiotypes that are detected to be inside a cluster.

ions, An alternative could be, to measure the diff

4 Experimental Results

Repulsive prototypes become of great value if there are many data sels to analyze
having similar properties regarding the expected cluster size, but different number
of clusters. This is the case for an actual problem in the domain of air traffic manage-
ment. In this application, the airspace around airports needs to be analyzed. Groups
of aircraft need to be found that approach the airport from similar directions. For
this purpose, the first radar point of the aircraft inside the specified airspace is con-
sidered. When applying fuzzy c-mecans or noise clustering with randomly initialized
prototypes, it is very unlikely that each cluster is found by exactly one prototype.
The data set presented in Fig. 2 (left) is similar to one of our examples, but due to
educational purposes artificially generated. An approach using noise clustering with
randomly initialized prototypes often ends in a result like in Fig. 2 (right). One clus-
ter is associated to two prototypes which results in at least one data cluster wrongly
associated to the noise cluster (illustrated by the circle on the left side).

As shown in Fig. 3 (left), repulsive prototypes can be used to find the number and
position of the clusters. In a second step, noise clustering can be used to partition
this data set which produces the result shown in Fig. 3 (right). For this example, the
following parameters were used: @ = 2. v = 0.2,m = 20,0 = 0.9v, y = 1.8y,
o = 0.05 and u,,;, = 50.

When it comes to the number of prototypes, the question may arise by what
extent the number of prototypes may be overestimated. A test with artificial data
has shown that there is almost no restriction to the number. Because of the quadratic
nature of calculation complexity, however, it might not be wise to overestimate the
number of clusters unreasonably.
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Fig. 2 Example for clustering the entrance positions of the airspace surrounding an airport. The
airport is located at the gray area in the middle. The big cirele has a diameter of 200 NM (370 km).
The data recordings in the middle are considered o be noise because they are too far away from
the border. The “tails” of the Prototypes represent their path from their initialization point io their
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Fig. 3 Example for applying repulsive clustering on the data set of Fig. 2

As for all clustering algorithms, there are examples where repulsive prototypes

do not work. An example is shown in Fig
is in the data set and several small in close

4. It at least one large and vast cluster
proximity, so that the distance between

the small clusters is less than the diameter of the large one, than repulsive cluster-
ing does not find a useful result. In our problem of clustering flight data, repulsive
clustering worked for all examples very well. The correct number of clusters were
found in all cases, only the noise distance had o be manually adjusted in some data

sets due to unusual sized clusters.
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Fig. 4 Example where repulsive clustering does not produce a satisfying result. If the repulsion
is strong enough so that the large clusters are represented by just one prototype, then the small
clusters can not be represented by one prototype each (left). If the repulsion s adjusted 10 a way,
that the small clusters are correctly approximated, the large clouds are divided into several clusters
(right)

5 Conclusions and Future Work

We have shown that noise clustering with repulsive prototypes can be used to find
the number and approximate position of clusters in a data set. This can be useful if
the exact number of clusters is not known in advance or if the clusters are located in
a way, that a straightforward approach with fuzzy ¢-means does not produce good
results due to bad initialization of the prototypes. We have also shown that repulsive
prototypes can be parametrized intuitively, allowing their application without expert
knowledge.

The principle of repulsive prototypes allows to use them with every prototype-
based clustering algorithm. Therefore, we will test the behavior of repulsive pro-
totypes with other prototype-based clustering algorithms. We have not tested the
behavior in high dimensional spaces, which will be done in near future. The prob-
lem of applying repulsive prototypes on problematic data sets like shown in the last
section, might be solved by localized distance measures.
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