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Abstract

1t is well known that classical trees lack the ability of modelling vagueness. By connect-
ing fuzzy systems and classical decision trees, we try to achieve classifiers that can model
vagueness and are comprehensible. We discuss the core problem of how io compute the
information measure used in the induction of fuzzy trees and propose some improvements,
In addition, we consider fuzzy rule bases derived from fuzzy decision trees and present
some heuristic strategies (o prune them. We also compare results of some of our exper-
iments and compare our approach to other well-known classification methods, We have

implemented our approach into the automatic data analysis platform SPIDA developed at

BT, which enables non-expert users (o run advanced data analysis tasks.

Keywords: Fuzzy decision trees, automatic data analysis, classification models
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amine in detail the core problem of how to compute the inforn

lection step,  Also we discuss how o treal missing values. In addition we consider how

to extract a fuzzy rule base from the induced {uzzy tree by which the classification is finally

performed and we study heuristics 1o simplify the rule base. in Section 5 we present our exper-
imental resubs obtained with an implementation of our algorithi and compare them o those of

some popular classifiers. Section 6 coneludes the work and points out some further work.

2 Approaches to Automatic Data Analysis

Previous approaches towards automating daia analysis or knowledge discovery in databs

were based on Al techniques. Analysis methods were broken down into formal blocks and

i

algorithm would

user requirements were also represenied in a formal language. Then a sea
identify suitable blocks and arrange them in a way to carry oui an analysis process [ 16].
These approaches had to face the problem of formalising mainly heuristic methods and that

amelers 1o execute an analysis

it is usually not feasible to formally compuie all necessary par:
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The approach fo avtomating 1A at BT's ISR Centre is based on the following preniis

e, simple, inexpensive sc

ided {0 use fuzzy ¢

modelling user requirements.

e Most advanced 1DA technologies like neural networks, decision trees, neuro-fu

tem, cluster analysis eic. are all based on heuristics. Based on fuzzy user requi



ot those meth-

ods. We have therefore decided (o use fuzzy

stems to determine parameters of analysis

methods,

e Propertics of analysis s are Tuzzy, Some methods are fasi, some can praduce

accurale results retable. &

1properties are relevant for their application

and are best described by fuzzy

ts, since many of them are inherently fuzzy.

pert knowled 1y how 1o use which analy

ie method is vague (fuzzy). Daia analysis

experis bave in addition to their i methods vague intuitive

and how {0 run an analysis in 2

< Centre developed SPIDA (Soft

3

ysis

ool comprising a set of data analysis methods mainly from the area of soft computing and

related areas (neural networks, neuro-fuzzy system

support vector machines, decision trees

efc.), data filters for pre- and posi-processing. visualisation capabilities and access to different

data sources (text files, databases).
The main user group targeted by SPIDA are domain experts. They typically are familiar

with their data, they know the proces

» that produce the data, and are usually keen to review

these processes in order to improve or understand them. Furthermore, gained knowledge can

also be applied (o other problems that are Iata like using information gained (rom

customer data for marketing purposes. Domain experts are usually no data mining experts, but
they can specify their data analysis problem and their requirements for the solution at a high
level. Based on this information and the data, the SPIDA Wizard selects and runs data analysis
methods awtomatically. To achieve this, SPIDA uses fuzzy knowledge bases (o match fuzzy
user requirements against method features (each analysis method that is available in SPIDA is
described by fuzzy and non-fuzzy features) and to automatically determine runtime parameters.

SPIDA is implemented in an open client/server architecture. The server runs IDA processes

and the client functions as a graphical user interface (GUI) and can connect both to Tocal and
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dealing with missing values. For the tests we us

Learning Reposity [3]. Table 2 shows gene

All experiments were run with 10-fold cross validation. C4.5 was

configuration. In NEFULASS for each at

fuzzy sets was created. Fuzzy sets were also optimized during the rule pruning. The ne

network program trained a multilayer perceptron (MLP) with one hidden fayer (3 neurons) for

1000 epochs.

2wie used the rule base generated by FIVT for the experiments.
*The fearning resuit of C4.5 can be both a wee or a rule base. Here we used the generated rule base for the

experiments.
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Since we tried 10 geners rehensible classification models, a trade-off between preci-

sion and complexity should be found. With this concern in mind, in FIDT a threshold of 0.05 for
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the information measure was chosen. That is, a test is created only if the chosen test attribute
vields an information value higher than 0.05.

~

5.1 Precision And Complexity

Table 3 shows the average error rate £, as well as the number of rules n of the resulting praned
classifiers. The best error rate of the models is printed in bold in the table.

In these experiments, FDT was run with two different initial partitioning of the attributes
- the automatic (labelled as FDT (1)) and the individual partitioning (Iabelled as FDT (2))
mentioned above. With the individual partitioning each attribute was partitioned wiili three
fuzzy sets, which were evenly distributed over the attribute’s domain, while with automatic
partitioning the number of fuzzy sets was determined by the program,

If we consider only the precision of the models. it is very difficult to say which method is the

best one, since each method produces the best result at least once. C4.5 never vields the worst
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s sets used in FDT (2) were

created once at the beginning and did not chang
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If we compare the two groups of results yielded by FDT — taking noi only the precision but

also the complexity of the classifi

5 into account — we conclude that the learning process cre-

ates betier classifiers if it works with automatic instead of individual partiioning. In pariicular,

the number of rules of the firg

sumably
the reason is that in the first variant the class information is taken into account, whereas it is

neglected in the latter.

5.2 Tests On Imperfect Data

The experiments on the data with missing values, which were generated by randomly deleting
values from each daia set, demonstrate how well different learning methods can cope with

imperfect data. In these tests FDT was only run with automatic pariitioning.
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