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Abstract—While in standard fuzzy clustering one optimizes a
set of prototypes, one for each cluster, we study fuzzy clustering
without prototypes. We define an objective function, which
only depends on the distances between data points and the
membership degrees of the data points to the clusters, and
derive an iterative membership update rule. The properties of
the resulting algorithm are then examined, especially w.r.t. to an
additional parameter of the objective function (compared to the
one proposed in [7]) that can be seen as a more flexible alternative
to the fuzzifier. Corresponding experimental results are reported
that demonstrate the merits of our approach.
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I. INTRODUCTION

Fuzzy clustering algorithms [9], [2], [3], [4], [16] are very

popular methods for finding groups in data, especially in

domains where groups are imperfectly separated and thus a

crisp assignment of data points to clusters is inappropriate.

These algorithms are usually prototype-based: they try to

optimize a set of prototypes, one for each cluster, which consist

of a cluster’s location, size, and shape parameters. The goal of

fuzzy clustering is then defined by an objective function, which

involves the data points, the prototypes, and the membership

degrees of the data points to the clusters, and is usually to be

minimized. The most common objective function is

J(X,C,U) =

c
∑

i=1

n
∑

j=1

uw
ij d2

ij ,

where X = {~xj | 1 ≤ j ≤ n} is the given data set, consisting

of n vectors (data points), and C = {ci | 1 ≤ i ≤ c}
is the set of cluster prototypes. dij denotes the distance

between datum ~xj and the i-th cluster (where this distance

may depend not only on a cluster center, but also on cluster-

specific parameters describing the cluster’s size and shape [13],

[12], [6]). uij ∈ [0, 1] is the degree of membership to which

data point xj belongs to the i-th cluster. The c × n matrix

U = (uij)1≤i≤c,1≤j≤n combines the individual assignments

and is called the (fuzzy) partition matrix. Finally w is the so-

called fuzzifier, which controls the crispness of the assignment:

the higher its value, the softer are the cluster boundaries.

In order to rule out the trivial (but useless) solution

∀i, j; uij = 0 and to ensure that no cluster is empty, one

introduces the constraints

∀j; 1 ≤ j ≤ n :

c
∑

i=1

uij = 1, ∀i; 1 ≤ i ≤ c :

n
∑

j=1

uij > 0.

Different fuzzy clustering algorithms are then distinguished

based on the cluster prototypes and the distance measure.

The most common fuzzy clustering algorithm is a straight-

forward generalization of classical k-means clustering [1],

[15], [21] to fuzzy membership degrees: the fuzzy c-means

algorithm [2], [3], [16] is based on point prototypes and uses

the Euclidean distance. More sophisticated variants introduce

cluster-specific covariance matrices (to describe ellipsoidal

shapes), sizes, and weights (see, for example, [13], [12], [6]).

The optimization scheme, derived by exploiting the nec-

essary condition that all partial derivatives of the objective

function w.r.t. the parameters (membership degrees, cluster pa-

rameters) must vanish at a minimum, is usually alternating, so

that membership degrees and cluster prototypes are optimized

separately, while the other group of parameters is fixed.

In this paper, however, we investigate an approach that

does not employ prototypes to describe the clusters, but uses

only a partition matrix. It has the advantage that the data

points need not be embedded in a metric space, but that it

suffices to know a distance matrix. Following the standard

paths for fuzzy clustering, we derive the basic algorithm in

Section II. In Section III we present experimental results for

the standard version of the algorithm (that is, without the

additional parameter introduced here) and compare them in

Section IV to experiments in which the additional parameter

is used. It turns out that the additional parameter is a more

flexible alternative to the fuzzifier and thus can be seen as

being related to the approach presented in [19].

II. THE BASIC ALGORITHM

The basic idea of our approach is that data points that are

far away from each other should not have high degrees of

membership to the same cluster, while for data points that are

close together, high degrees of membership to the same cluster
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are not only acceptable, but actually desirable. The scheme has

some relation to the reformulation approach [14], which, if it is

used to eliminate the update of the prototype parameters rather

than the update of the membership degrees, leads to a similar,

but more complex objective function, and to fuzzy k-nearest

neighbors algorithms [18], from which one may also derive

a candidate update rule for prototype-less fuzzy clustering.

However, as discussed in [7], the latter does not lead to useful

results, as it tends to equalize the membership degrees.

A. Objective Function

A natural way to code the intuitive fuzzy clustering goal

outlined above is the parameterized objective function

J(X,U) =

c
∑

i=1

n
∑

j=1

j−1
∑

k=1

(uw
iju

w
ik + α(uw

ij + uw
ik))d2

jk

=
c
∑

i=1

n
∑

j=1

n
∑

k=1

(

1

2
uw

iju
w
ik + αuw

ij

)

d2

jk,

which is to be minimized subject to the usual constraints

∀j; 1 ≤ j ≤ n :

c
∑

i=1

uij = 1, ∀i; 1 ≤ i ≤ c :

c
∑

j=1

uij > 0.

Here djk is the distance between the data points xj and xk

and uij and uik are the degrees of membership to which the

data points xj and xk, respectively, belong to the i-th cluster.

The fuzzifier w controls again the crispness of the assignment:

the higher its value, the softer is the clustering result.

Regardless of the value of the second parameter α, the value

of this objective function is clearly the higher, the more distant

data points are assigned to the same cluster. On the other hand,

assigning data points that are close to each other to the same

cluster is relatively harmless (that is, does not increase the

function value much). Hence minimizing this function can be

expected to yield an appropriate fuzzy partition matrix.

Choosing α = 0 yields a fairly standard objective function,

which was explored in detail in [7], in particular w.r.t. local

neighborhood schemes. However, the goal of this paper is to

investigate the influence of a non-vanishing α (this parameter

is not present in [7]). As our investigation shows (see the

experiments in Section IV), negative values are particularly

interesting. They lead to a behavior similar to the approach

in [19], which introduced an alternative to the fuzzifier in the

prototype-based setting: The more negative α is, the harder

are the data point assignments. A look at the second form of

the objective function already makes this plausible, since the

term containing α penalizes, for negative α values, an equal

distribution to the different clusters, especially for data points

that are far away from (most) other data points.

B. Update Procedure

Not surprisingly, the update rule for the membership degrees

is derived along the same lines known from prototype-based

fuzzy clustering, for example, fuzzy c-means. The constraint

that the membership degrees of each data point must sum to 1

is incorporated into the objective function with the help of

Lagrange multipliers, yielding the Lagrange function

L(X,U, Λ) =

c
∑

i=1

n
∑

j=1

j−1
∑

k=1

(uw
iju

w
ik + α(uw

ij + uw
ik))d2

jk

+

n
∑

k=1

λk

(

1 −

c
∑

i=1

uik

)

.

This Lagrange function is then minimized instead of the

objective function, thus implicitly respecting the constraint.

One exploits that a necessary condition for a minimum is

that the partial derivatives w.r.t. the parameters (here only the

membership degrees) vanish. That is, at a minimum of the

Lagrange function we have ∀a, 1 ≤ a ≤ c : ∀b, 1 ≤ b ≤ n :

∂L

∂uab

=
n
∑

k=1

k 6=b

(wuw−1

ab uw
ak + αwuw−1

ab )d2

kb − λb

= wuw−1

ab

n
∑

k=1

(uw
ak + α)d2

bk − λb = 0.

(Note that the index condition k 6= b can be dropped, because

∀b : dbb = 0 and thus the corresponding term always vanishes.)

This condition leads to ∀i, 1 ≤ i ≤ c : ∀j, 1 ≤ j ≤ n :

uij =

(

λj

w
∑n

k=1
(uw

ik + α)d2

jk

)
1

w−1

.

Summing these equations over the clusters (in order to be

able to exploit the corresponding constraint on the membership

degrees: they must add up to 1), we obtain

1 =

c
∑

i=1

uij =

c
∑

i=1

(

λj

w
∑n

k=1
(uw

ik + α)d2

jk

)
1

w−1

.

Consequently, the λj , 1 ≤ j ≤ n, are

λj =





c
∑

i=1

(

w

n
∑

k=1

(uw
ik + α)d2

jk

)
1

1−w





1−w

.

Inserting this result into the equations for the membership

degrees yields ∀i, 1 ≤ i ≤ c : ∀j, 1 ≤ j ≤ n :

uij =

(

∑n

k=1
(uw

ik + α)d2

jk

)
1

1−w

∑c

l=1

(

∑n

k=1
(uw

lk + α)d2

jk

)
1

1−w

.

which for the special case w = 2 (which is the most common

choice for prototype-based fuzzy clustering) simplifies to

uij =

(

∑n

k=1
(u2

ik + α)d2

jk

)−1

∑c

l=1

(

∑n

k=1
(u2

lk + α)d2

jk

)−1
.

Since this (non-linear) equation system is technically highly

difficult to solve (due to the somewhat complicated interde-

pendence of the membership degrees), we draw on the same
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trick that is exploited in prototype-based fuzzy clustering:

alternating optimization. That is, we use the above equation as

an update rule that is applied iteratively in order to approach

a (possibly only local) optimum.

In principle, this may even be done in two ways: an

online fashion, in which the updated membership degrees

immediately replace the old membership degrees and thus are

used directly for updating other membership degrees, and in

a batch fashion, where a full new set of membership degrees

is computed in one step from the old membership degrees.

However, several experiments revealed that a batch update is

not feasible in practice, regardless of the initialization (see

below): a batch update process is highly unstable and often

ends with a fairly random crisp assignment of the data points.

As a consequence we confine ourselves in this paper to an

online update, which cycles through the data points. That is, in

each step all membership degrees of one data point are recom-

puted (which is necessary due to the normalization involved in

the computation of the membership degrees: sum 1). In order

to avoid effects that could result from a special order of the

data points, the update order is changed after every epoch, that

is, the data points are shuffled after each traversal.

C. Initialization

An iterative update needs a starting point. Here we need an

initial (fuzzy) assignment of the data points to the clusters.

We tried two different schemes: in the first, all membership

degrees are initialized to random values from the unit interval

and then normalized for each data point (that is, they are

divided by the sum of the membership degrees for the data

point in order to achieve that this sum is 1 afterwards).

Secondly, one may initialize all data points to the same value
1

c
(c is the number of clusters) and then seed the clusters by

randomly choosing a data point for each of them, which is

assigned crisply to it. Of course, in this case it is advisable to

make sure that the data points used as seeds are updated last

in the first epoch, so that the seeding does not get lost.

Although these two schemes appear to be considerably

different, we did not observe much of a difference between

them in our experiments: the results were basically the same.

Hence we confine ourselves to the former method here.

III. BEHAVIOR FOR α = 0

For a basic evaluation of the algorithm we used two classic

benchmarks, namely the Iris data [11] (150 data points), with

all four descriptive attributes (petal length and width and sepal

length and width), and the Wine data [5] (178 data points),

using only the descriptive attributes 7, 10, and 13, which

are the most informative w.r.t. the class structure. The class

attribute was, of course, not used as an input. For both data

sets all used attributes were normalized to mean 0 and standard

deviation 1 in order to rule out scaling effects.

We consider first the results for the Iris data. For compar-

isons, the result of the standard fuzzy c-means algorithm with

c = 3 and w = 2 is shown in Figure 1. It yields a clear division

into three cluster, even though some data points cannot be

Fig. 1. Iris data clustered with fuzzy c-means (w = 2).

Fig. 2. Iris data clustered with prototype-less algorithm (w = 2, α = 0).

assigned unambiguously. (The degree of membership to a

cluster is the higher, the darker the grey.) These clusters

correspond reasonably well to the classes: if the clustering

result is used as a classifier, 26 data points are misclassified.

The prototype-less algorithm, however, identifies only one

of these classes (Iris Setosa, lower left), while the rest of

the data points have almost equal membership degrees to the

remaining two clusters (see Figure 2). One may see this as a

failure, but actually the division of the data points belonging to

Iris Virginica and Iris Versicolor (upper right) into two clusters

is rather arbitrary (if the class is not known to the algorithm,

as it is the case here). It can rather be argued that there are

actually only two clearly separated clusters and then the result

of the prototype-less algorithm would simply indicate that the

number of clusters was chosen inappropriately.

On the other hand, the prototype-less algorithm can be made

to yield a division into three clusters if the fuzzifier is reduced.

As an example, Figure 3 shows the result for w = 5

3
. Even

though the division of the Iris Virginica and Iris Versicolor data

points is still less crisp than for the standard fuzzy c-means
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Fig. 3. Iris data with prototype-less algorithm (w =
5

3
, α = 0).

Fig. 4. Iris data with prototype-less algorithm (only petal length and width).

algorithms (since the grey does not get as dark in the upper

right, thus still providing information that these clusters are

not well separated), the cluster structure is almost the same.

It is also worth noting that the result becomes closer to

the fuzzy c-means result if only the two most informative

attributes (petal width and length) are used (see Figure 4).

Nevertheless the cluster division stays less crisp than for fuzzy

c-means, thus maintaining that the clusters are badly separated.

Similar observations can be made on the Wine data. Figure 5

shows, for comparison purposes, the result that is obtained

with the standard fuzzy c-means algorithm (w = 2) with

attribute 7 on the horizontal and attribute 10 on the vertical

axis. It shows a fairly clear division into three clusters,

which—like for the Iris data—correspond fairly well with the

classes of this data set: if the clustering result is used as a

classifier only 15 of the 178 data points are misclassified.

However, from Figure 5 one guess (and a 3-dimensional

view on the data set confirms this) that the clusters are not

well separated. Hence one may already suspect, judging from

the result obtained on the Iris data, that the prototype-less

Fig. 5. Wine data clustered with fuzzy c-means (w = 2).

Fig. 6. Iris data with prototype-less algorithm (w =
5

3
, α = 0).

algorithm may have trouble to find a similar structure with

the default setting. And indeed, with a fuzzifier w = 2 the

membership degrees are completely equalized. However, as it

was the case for the Iris data, lowering the classifier amends

the problem: with w = 3

5
the result shown in Figure 6 is

obtained, which is fairly similar to the fuzzy c-means result.

Nevertheless the assignment is still less crisp as in the fuzzy

c-means result, reflecting the overlapping classes. In order to

fully reach the crispness of the fuzzy c-means result, an even

lower fuzzifier would be needed. Generally, we found in our

experiments that the prototype-less algorithm seems to require

a lower fuzzifier than prototype-based fuzzy clustering in order

to yield comparable results. In this sense, prototype-less fuzzy

clustering is “fuzzier” than its prototype-based counterpart.

IV. INFLUENCE OF THE PARAMETER α

In order to illustrate the results that can be obtained if

the parameter α is not set to 0, Figures 7 and 8 show the

result for slightly negative α (α = −0.02 and α = −0.05,

respectively) for the Iris data. Note that these results are both
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Fig. 7. Iris data with prototype-less algorithm (w = 2, α = −0.02).

Fig. 8. Iris data with prototype-less algorithm (w = 2, α = −0.05).

obtained with the standard fuzzifier w = 2. (This has the

advantage that the computations can be carried out much

faster than the one of Figure 3, since fractional exponents

cause considerable computational costs.) While the result for

α = −0.02 (Figure 7) lies between the prototype-less result

for w = 5

3
and the fuzzy c-means result w.r.t. the crispness

of the assignments, the result for α = −0.05 (Figure 7) is

even crisper than the fuzzy clustering result. Actually the

membership degrees of data points that clearly belong to one

of the classes become 1 for the correct class, while all other

classes are assigned a membership degree of zero. Only at the

boundaries of the clusters the membership degrees become

fuzzy, thus nicely modeling the overlapping cluster structure.

Note also that the boundaries of the clusters (light grey

areas) are slightly shifted compared to the fuzzy c-means

result: they are minimally farther to the upper right. However,

the class structure is still recognized: if the clustering result is

used as a classifier, 26 data points are misclassified.

Similar observations can be made on the Wine data, for

which Figures 9 and 10 show the results for α = −0.02 and

Fig. 9. Wine data with prototype-less algorithm (w = 2, α = −0.02).

Fig. 10. Wine data with prototype-less algorithm (w = 2, α = −0.05).

α = −0.05, respectively. The former almost coincides with the

result obtained with w = 5

3
and α = 0 (Figure 6), while the

latter is again (as for the Iris data) even crisper than the fuzzy

c-means result (Figure 5). Note also that the cluster boundaries

are slightly different from the fuzzy c-means result, which is

particularly clear for the two clusters on the left.

These results demonstrate that the effect of the parameter α

is similar to the one that can be achieved with the approach of

[19] for the prototype-based case, namely that the parameter

α can be used as a (more efficient) alternative to the fuzzifier

(needing only a simple addition and not the computation of

fractional powers). The lower the value of α (or the higher its

absolute value, since negative values produce the effect), the

crisper the assignment of the data points.

In addition, our experiments indicate that this approach

(almost) eliminates the drawback of fuzzy clustering (as

discussed in [19]) that all data points have a non-vanishing

membership to all clusters: with a sufficiently low α (suffi-

ciently large negative value), data points that lie in the middle

of the formed clusters become (almost) crisply assigned.
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V. CONCLUSIONS

In this paper we presented a fuzzy clustering approach,

which does not optimize a set of prototypes, but works solely

with a fuzzy partition matrix. A core advantage of such a

prototype-less scheme is that it only needs a distance matrix of

the data objects, rather than the positions of the data points in a

metric space. Neither is a procedure for computing prototypes

needed. (It shares these advantages with (fuzzy) hierarchical

agglomerative clustering [10], [17], [23], [8].) Therefore it can

also be used in domains in which the distances are non-metric,

and thus has a wide potential application area.

The disadvantages of this approach are, of course, the higher

computational complexity, which is O(cn2) for each update

step (since all n2 pairwise distances have to be evaluated for

each of the c clusters), and that it produces softer assignments

of the data points if the same fuzzifier is used as for prototype-

based fuzzy clustering. However, we eliminated the latter

disadvantage by extending the objective function in the way

suggested in Section II-A, namely by adding a parameter α

that penalizes an assignment of a data point to several clusters.

With this additional parameter similar effects can be achieved

as by changing the fuzzifier, thus making it a more efficient

alternative that does not require fractional exponents.

Future work includes to test the algorithm on pure distance

data (that is, no embedding of data objects into a metric space,

only a distance matrix is given) and to compare it to hierarchi-

cal agglomerative clustering approaches. Furthermore it may

be worthwhile to investigate other neighborhood schemes than

those discussed in [7], since they may provide a simple and

effective way to lower the computational costs.

Software

An implementation of the algorithms described in this paper,

which was also used for the experiments, is available at

http://www.borgelt.net/ptless.html.
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