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Abstract The importance of carrying out effective and sustainablgcatjure is
getting more and more obvious. In the past, additionalfatioound could be tilled
to raise production. Nevertheless, even in industrializedntries agriculture can
still improve on its overall yield. Modern technology, suat GPS-based tractors
and sensor-aided fertilization, enables farmers to optntineir use of resources,
economically and ecologically. However, these modernrteldyies create heaps
of data that are not as easy to grasp and to evaluate as theyheg been. There-
fore, techniques or methods are required which use thosea#teir full capacity
— clearly being a data mining task. This paper presents sogerienental results
on real agriculture data that aid in the first part of the daitaimg process: under-
standing and visualizing the data. We present interestomglasions concerning
fertilization strategies which result from data mining.

Key words: Precision Farming, Data Mining, Self-Organizing Maps, NéNet-
works

1 Introduction

Recent worldwide economic development shows that aguaiiwill play a crucial
role in sustaining economic growth, both in industrializdwell as in develop-
ing countries. In the latter countries agricultural depehent is still in its early
stages and production improvements can easily be achigvethiple means like
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introduction of fertilization. In industrialized coungs, on the other hand, even the
agricultural sector is mostly quite industrialized itsefferefore improvements are
harder to achieve. Nevertheless, due to the adoption of ma@sleS technology and
the use of ever more different sensors on the field, the tgatision farminghas
been coined. According to [16], precision farming is the pling, mapping, analy-
sis and management of production areas that recognisegatial wariability of the
cropland.

In artificial intelligence terms, the area of precision fargn(PF) is quite an in-
teresting one as it involves methods and algorithms fromeroms areas that the
artificial intelligence community is familiar with. When dgzaing the data flow that
results from using PF, one is quickly remindeddata mining an agriculturist col-
lects data from his cropland (e.g., when fertilizing or keesting) and would like
to extract information from those data and use this inforomato his (economic)
advantage. A simplified data flow model can be seen in Figufihérefore, it is
clearly worthwile to consider using Al techniques in thehligf precision farming.

1.1 Research Target

With this contribution we aim at finding suitable methods isualize agricultural
data with a high degree of precision and generality. We prtedifferent data sets
which shall be visualized. We present experimental resuiteeal and recent agri-
cultural data. Our work helps in visualizing and understagdhe available data,
which is an important step in data mining.

1.2 Article Structure

This article concentrates on the third and fourth step ofddia flow model from
Figure 1, namely building and evaluating different modEelsre, the modeling will
clearly be aimed at visualizing the data. Neverthelessildewvhich are necessary
for the understanding and judgment of the modeling stagenailbe omitted. This
article starts with a description of the data and (partlyy lleey have been acquired
in Section 2. After the data have briefly been shown, theiexjshodeling approach
and the basics of self-organizing maps will be shown in 8a@i Section 4 is at the
core of this article: the different data sets will be viseall and conclusions will be
drawn from the visualisations — and compared with farmexpeeience. Section 5
presents a short conclusion and lays out our future work.
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Fig. 1: Data mining for agriculture data

2 Data Description

The data available in this work have been obtained in the 8@6 on a field near
Kothen, north of Halle, GermahAll information available for these 72- and 32-
hectare fieldswas interpolated using kriging [12] to a grid with 10 by 10 evst
grid cell sizes. Each grid cell represents a record with @lilable information.
During the growing season of 2006, the field was subdividédl diifferent strips,
where various fertilization strategies were carried owt. & example of various
managing strategies, see e.g. [11], which also shows th®atio potential of PA
technologies quite clearly. The field grew winter wheat, xgheitrogen fertilizer
was distributed over three application times during theving season.

Overall, there are seven input attributes — accompaniethéyield in 2006 as
the target attribute. Those attributes will be describeth@following. In total, for
the smaller field (F131) there are 2278 records, for the tdigkel (F330) there are
4578 records, thereof none with missing values and noneowitlers.

2.1 Nitrogen Fertilizer -N1, N2, N3
The amount of fertilizer applied to each subfield can be gasdlasured. Itis applied
at three points in time into the vegetation period.

2.2 Vegetation -REIP32, REIP49

Thered edge inflection pointREIP) is a first derivative value calculated along the
red edge region of the spectrum, which is situated from 686ttnm. Dedicated
REIP sensors are used in-season to measure the plantstiogflgcthis spectral
band. Since the plants’ chlorophyll content is assumeddblficorrelate with the

1 GPS: Latitude N 51 40.430, Longitude E 11 58.110
2 We will call themF330andF131, respectively
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nitrogen availability (see, e.g. [6]), the REIP value aléofer deducing the plants’
state of nutrition and thus, the previous crop growth. Fathier information on
certain types of sensors and a more detailed introducten[1$5] or [5]. Plants that
have less chlorophyll will show a lower REIP value as the rdgeemoves toward
the blue part of the spectrum. On the other hand, plants witterohlorophy!l will
have higher REIP values as the red edge moves toward ther ghelengths. For
the range of REIP values encountered in the available da&a;Tables 1 and 2.
The numbers in theeIiP32 andrREIP49 names refer to the growing stage of winter
wheat.

2.3 Electric Conductivity -Em 38

A non-invasive method to discover and map a field’s hetereigeis to measure the
soil’s conductivity. Commercial sensors such as the EN&@ designed for agri-
cultural use and can measure small-scale conductivity tepshdof about 1.5 me-
tres. There is no possibility of interpreting these sensda dlirectly in terms of
its meaningfulness as yield-influencing factor. But in cection with other site-
specific data, as explained in the rest of this section, tbeuél be coherences. For
the range of EM values encountered in the available dataladges 1 and 2.

2.4 YIELD 2005/2006

Here, yield is measured in metric tons per hectzﬁge, (where one metric ton equals
roughly 2204 pounds and one hectare roughly equals 2.43.&aethe yield ranges
for the respective years and sites, see Tables 1 and 2. lidshewnoted that for both
data sets the yield was reduced significantly due to bad weatinditions (lack of
rain) during the growing season 2006.

2.5 Data Overview

In this work, we evaluate data sets from two different fiellrief summary of
the available data attributes for both data sets is giverabi€eg 1 and 2. On each
field, different fertilization strategies have been usedi@scribed in Section 2.6.
For each field, one data set will contain all records, thusgainimg all the different
fertilization strategies. Another data set for each fieltl bé a subset of the first
that only contains those data records where the MLP has bsssh tespectively.
Table 3 serves as a short overview about the resulting fdi@reint data sets.

3 trademark of Geonics Ltd, Ontario, Canada
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Table 1: Data overview, F131

F131 | min | max|mearn std |Description
YIELDO5| 1.69|10.68 5.69| 0.93|yield in 2005
EmM38 |51.5884.0862.21 8.60 |electrical conductivity of soll
N1 [47.70 70 |64.32 6.02|amount of nitrogen fertilizer applied at the first date
N2 [14.80 100 [51.7115.67/amount of nitrogen fertilizer applied at the second gate
N3 0 70 |39.65913.73amount of nitrogen fertilizer applied at the third date
REIP32 |719.6724.4722.6 0.69|red edge inflection point vegetation index
REIP49 |722.3727.9725.8 0.95|red edge inflection point vegetation index
YIELDO6| 1.54| 8.83| 5.21| 0.88|yield in 2006

Table 2: Data overview, F330

F330 | min | max|mean std |Description
YIELDO5| 4.64|14.1210.62 0.97 |yield in 2005
EM38 |25.0849.4833.69 2.94 |electrical conductivity of soil
N1 24.0| 70 |59.4814.42amount of nitrogen fertilizer applied at the first date
N2 3.0 | 100 [56.3813.35amount of nitrogen fertilizer applied at the second fate
N3 0.3 | 91.6(50.0512.12amount of nitrogen fertilizer applied at the third date
REIP32 |719.2724.4721.5 1.03|red edge inflection point vegetation index
REIP49 |723.0728.5726.9 0.82|red edge inflection point vegetation index
YIELDO6| 1.84| 8.27| 5.90| 0.54|yield in 2006

Table 3: Overview on available data sets for specific ferti@astrategies for different fields
F131-all{yIELD05,EM38,N1, REIP32,N2, REIP49,N3, YIELD 06, fert. strategy
F131-netsubset of F131-all where fertilization strategyeural network

F330-all{yIELD05,EM38,N1, REIP32,N2, REIP49,N3, YIELD 06, fert. strategy
F330-netsubset of F330-all where fertilization strategynisural network

2.6 Fertilization Strategies

There were three different strategies that have been usguide the nitrogen fer-
tilization of the fields. F131 contains data resulting fromotstrategies (F, N) and
F330 contains data from three strategies (F, N, S). The #trategies are as follows:

F — uniform distribution of fertilizer according to longrta experience of the
farmer

N — fertilizer distribution was guided by an economic optiation with a multi-
layer perceptron model; the model was trained using the eldava with the
current year’s yield as target variable that is to be predict

S - based on a special nitrogen sensor — the sensor's measiiseane used to
determine the amount of nitrogen fertilizer that is to beligop
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2.7 Points of Interest

From the agricultural perspective, it is interesting to e& much the influenca-
ble factor “fertilization” really influences the yield in¢hcurrent site-year. Further-
more, there may be additional location factors that coteetrectly or indirectly
with yield and which can not be discovered using regressiotoaelation analy-
sis techniques like principal component analysis. Sajanizing maps (SOMs), on
the other hand, provide a relatively self-explanatory wagralyse those yield data
visually, find correlations and, eventually, make prediasi for current year’s yield
from past data. The overall research target is to find thatieators of a field’s het-
erogeneity which are optimal for prediction. In this paperwill present advances
in visualizing the available data with SOMs which helps iderstanding and will
ultimately lead to new heterogeneity indicators. The folltg section will briefly
summarize an appropriate technique to model the data thiadveepresented in ear-
lier work. Afterwards, SOMs will be outlined briefly, with ¢hmain focus on data
visualization.

3 Using Multi-Layer Perceptrons and Self-organizing Maps
Approach

This section deals with the basic techniques that we usedottehand visualize

the agricultural yield data. For modeling, we have used Mdyer Perceptrons, as
discussed in [10]. To visualize the data we will use Selfdbiging Maps (SOMSs).

Therefore, SOMs will comprise the main part of this section.

3.1 Multi-Layer Perceptrons for Modeling

In recent years, we have modeled the available data usindtalayer perceptron
(MLP). To gain more insights into what the MLP has learnedhia paper we will
use self-organizing maps to try to better understand thee alad the modeling pro-
cess that underlies MLPs. In [7], neural networks have beed for optimization
of fertilizer usage for wheat, in [13] the process has beeriethout for corn. In
[8] we could show that MLPs can be used for predicting curyear’s yield. For
a detailed discussion of the used MLP structure and parasyete refer to [9].
We basically used a feedforward-backpropagation muwtigerceptron with two
hidden layers. The network parameters such as the hidden $&ges were deter-
mined experimentally. A prediction accuracy of betweetbland 055 metric tons
per hectare (106 100 metres) at an average yield owht—a could be achieved by
using this modeling technique.
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3.2 Self-Organizing Maps for Visualization

Our approach of using SOMs is motivated by the need to bettdenstand the
available yield data and extract knowledge from those @& @aMs have been shown
to be a practical tool for data visualization [1]. MoreovBfQMs can be used for
prediction and correlation analysis, again, mostly visugd]. As such, the main
focus in explaining Self-Organizing Maps in the followinglivbe on the visual
analysis of the resulting maps.

Self-Organizing Maps have been invented in the 1990s by d&ohonen [4].
They are based on unsupervised competitive learning, wddakes the training to
be entirely data-driven and the neurons on the map to compigteeach other.
Supervised algorithms like MLPs or Support Vector Machineguire the target
attribute’s values for each data vector to be known in advamicereas SOMs do
not have this limitation.

Grid and Neigborhood: An important feature of SOMs that distinguishes them
from Vector Quantisation techniques is that the neuron®aganized on a regular
grid. During training, not only the Best-Matching Neurowi lalso its topological
neighbors are updated. With those prerequisites, SOMs eaeén as a scaling
method which projects data from a high-dimensional inpatcsponto a typically
two-dimensional map, preserving similarities betweerutngctors in the projec-
tion.

Structure: A SOM is formed of neurons located on a usually two-dimeneion
grid having a rectangular or hexagonal topology. Each meofdhe map is repre-
sented by a weight vectony = [myq,---,miy]T, wheren is equal to the respective
dimension of the input vectors. The map’s neurons are cdaeddo adjacent neu-
rons by a neighborhood relationship, superimposing thettre of the map. The
number of neurons on the map determines the granularityeafetbulting mapping,
which, in turn, influences the accuracy and generalizatigabilities of the SOM.

Training: After an initialization phase, the training phase beginse @ample
vectorx from the input data set is chosen and the similarity betwbeesample and
each of the neurons on the map is calculated. The Best-Matdbinit (BMU) is
determined: its weight vector is most similarxoThe weight vector of the BMU
and its topological neighbors are updated, i.e. moved clus¢he input vector.
The training is usually carried out in two phases: the firgtgghhas relatively large
learning rate and neighborhood radius values to help the adapt towards new
data. The second phase features smaller values for thénigaate and the radius
to fine-tune the map.

Visualization: The reference vectors of the SOM can be visualized via a com-
ponent plane visualization. The trained SOM can be seen #stiated with the
components of the vectors describing horizontal layensifedves and the reference
vectors being orthogonal to these layers. From the compgrianes the distribu-
tion of the component values and possible correlationsd@tveomponents can be
obtained easily. The visualization of the component plasm#® main feature of the
SOMs that will be utilized in the following section.
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In this work, we have used the Matlab SOM toolbox authoredlial {vith the
default presets and heuristics for determining map sizédemmning parameters.

4 Experimental Results

This section will present some of the experimental restiéd tve have obtained
using SOMs on agricultural data. The first two parts will deéh the analysis of
the maps generated from the complete data set (containffeyedit fertilization
strategies). The subsequent two parts will deal with thabsets of the data where
a MLP has been used for yield prediction and optimizatiore @ata sets have been
described in Section 2, an overview has been given in Table 3.

4.1 Results for F131-all

The full F131-all dataset consists of tReandN fertilization strategies where each
data record is labeled accordingly. After training the SOdihg the preset heuris-
tics from the toolbox [14], the labeled map that results isvahmin Figure 2a. The
corresponding U-Matrix that confirms the clear separahbditthe two fertilization
strategies is shown in Figure 2b. In Figures 3a to 3c the atmfuertilizer for the
three different fertilization times is projected onto ttee SOM. On those three
maps it can also be seen that the different strategies aae\ckeparated on the
maps. Another result can be seen in Figures 3d and 4b. Asdhewdxpected, the
REIP49 value (which is an indicator of current vegetation on tleddji correlates
with the YIELD 06 attribute. This hypothesis that we obtained from simaal in-
spection of the SOM’s component planes can be substanbgttae corresponding
scatter plot in Figure 4c.

4.2 Results for F330-all

In contrast to the F131 dataset, F330 contains three difféegtilization strategies.
The “farm” strategy (labele), the “neural network (MLP)” strategy (labeléd)

and the “sensor” strategy (label&®) In Figure 5a it can be seen that, as in the
preceding section, thé strategy is separable from the other two variants. However,
the F and S strategies are not clearly separable. The U-matrix in Eidily also
represents this behaviour. When looking at the projecteaegabfnl, N2 andN3

in the component planes in Figures 6a to 6c, the differenebsden theN andF

or Sstrategies are again clearly visible. There is, howevesunh clear connection
between thereIP49 (Figure 6d) andriELDO06 (Figure 7b) parameters as in the
preceding section. This can also be seen from the scatteinpkigure 7c. This
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might be due to the fact that the overall yield was signifigantéduced by bad
weather conditions in 2006. Nevertheless, there is a cestaiilarity between the
relative yields that can be easily obtained by comparirel. D05 to YIELDO6 in
Figures 7a and 7b.

U-matrix

(b) U-Matrix

Fig. 5: F330-all, Labels and U-Matrix
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Fig. 6: F330-all:N1, N2, N3, REIP49
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Fig. 7: F330-all:yIELD 05, YIELD 06, scatter plot
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4.3 Results for F131-net

F131-net represents a subset of F131-all: it contains ttiaterecords from F131-
all that were labeledN, i.e. in those field parts the neural network predictor was
used for fertilizer optimization. Figures 8a and 8b seemdnvey a connection:
the MLP has learned that whereeLD 05 was high (lower left of map), there is
less need okl fertilizer whereas the rest of the field needs a high amdtortn2,
another network is trained with more input, n@® andy1ELD 05 seem to correlate
(Figures 8a and 8c).

Furthermore, it is expected thatiP49 andyIELD 06 correlate, as can be seen
from Figures 9a and 9b. Furthermore, even the38 value for electromagnetic
conductivity correlates with the said attributes, see fédc. Additionally, the cor-
responding scatter plot in Figure 9d shows a separationdegtwelusters of low

EM38/IELD 06 values and higam38/IELD 06 values.
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a) YIELDO5 (b) N1 (d) Scatter plot for F131-net,
REIP49 vs.YIELD06

Fig. 8: F131-nety1ELD05,N1, N2, scatter plot
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VS.YIELDO6

Fig. 9: F131-netreIP49, YIELD 06,EM38, scatter plot
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4.4 Results for F330-net

As in the preceding section, F330-net represents a subged3tf-all: it contains
those data records from F330-all that were labéed.e. in those field parts the
MLP predictor was used for fertilizer optimization. AgaiRigures 10a and 10b
seem to convey a connection: the MLP has learned that where 05 was high
(lower left of map), there is less need ol fertilizer whereas the rest of the field
needs a high amount. Fa2, another network is trained with more input, ne®
andyIELD 05 seem to correlate (Figures 10a and 10c), although thelatian is not
as clear as with the F131-net dataset. Furthermore, it isact&g thaReIP49 and
YIELDO6 correlate, as can be seen from Figures 9a,9b and 8d. Fudtes even
theEM38 value for electromagnetic conductivity correlates wifith said attributes,
see Figure 9c. Additionally, the corresponding scattet pld~igure 9d shows a
separation between clusters of lem38/vIELD 06 values and higgm38/IELD 06
values.

From the agricultural point of view, the F330 field is quitéelient from the one
where the F131 data set was obtained, they are located 5waynfeom each other.
This difference can be clearly shown on the SOMs. So, evengtihdhe fields are
quite close, it is definitely necessary to have differentlsstale and fine-granular
fertilization and farming strategies.

5 Conclusion

In this paper we have presented a novel application of sgHrozing maps by using
them on agricultural yield data. After a thorough descoiptand statistical analy-
sis of the available data sets, we briefly outlined the adhged of self-organizing
maps in data visualization. A hypothesis on the differeteteeen two fields could
clearly be confirmed by using SOMs. We presented furtheltsesuhich are very
promising and show that correlations and interdependsiititne data sets can eas-
ily be assessed by visual inspection of the resulting corapoplanes of the self-
organizing map. Those results are of immediate practicaulisess and demon-
strate the advantage of using data mining techniques inwdgrie.

5.1 Future Work

The presented work is part of a larger data mining procesgattier work, we
have presented modeling ideas to represent the agriculateeand use them for
prediction and optimization [10]. This work presented &lea using advanced vi-
sualization techniques with the available, real data. feuttork will certainly cover
further optimization of the prediction capabilities andienating different model-
ing techniques as well as working with additional data susthow-altitude flight
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Fig. 10: F330-netyIELD05,N1, N2, scatter plot

(a)REIP49 (b) YIELDO6 (c) EM38 (d) Scatter plot for F330-net,
EM38 vs.YIELDO06

Fig. 11: F330-netreIP49, YIELD 06, EM38, scatter plot

sensors [2]. As of now, those additional sensor data arenbiegoavailable for data
mining — this will eventually lead to better heterogeneitgicators by refining the
available models.
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