
Visualization of Agriculture Data Using
Self-Organizing Maps

Georg Ruß, Rudolf Kruse, Martin Schneider, Peter Wagner

Abstract The importance of carrying out effective and sustainable agriculture is
getting more and more obvious. In the past, additional fallow ground could be tilled
to raise production. Nevertheless, even in industrializedcountries agriculture can
still improve on its overall yield. Modern technology, suchas GPS-based tractors
and sensor-aided fertilization, enables farmers to optimize their use of resources,
economically and ecologically. However, these modern technologies create heaps
of data that are not as easy to grasp and to evaluate as they have once been. There-
fore, techniques or methods are required which use those data to their full capacity
– clearly being a data mining task. This paper presents some experimental results
on real agriculture data that aid in the first part of the data mining process: under-
standing and visualizing the data. We present interesting conclusions concerning
fertilization strategies which result from data mining.

Key words: Precision Farming, Data Mining, Self-Organizing Maps, Neural Net-
works

1 Introduction

Recent worldwide economic development shows that agriculture will play a crucial
role in sustaining economic growth, both in industrializedas well as in develop-
ing countries. In the latter countries agricultural development is still in its early
stages and production improvements can easily be achieved by simple means like
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introduction of fertilization. In industrialized countries, on the other hand, even the
agricultural sector is mostly quite industrialized itself, therefore improvements are
harder to achieve. Nevertheless, due to the adoption of modern GPS technology and
the use of ever more different sensors on the field, the termprecision farminghas
been coined. According to [16], precision farming is the sampling, mapping, analy-
sis and management of production areas that recognises the spatial variability of the
cropland.

In artificial intelligence terms, the area of precision farming (PF) is quite an in-
teresting one as it involves methods and algorithms from numerous areas that the
artificial intelligence community is familiar with. When analyzing the data flow that
results from using PF, one is quickly reminded ofdata mining: an agriculturist col-
lects data from his cropland (e.g., when fertilizing or harvesting) and would like
to extract information from those data and use this information to his (economic)
advantage. A simplified data flow model can be seen in Figure 1.Therefore, it is
clearly worthwile to consider using AI techniques in the light of precision farming.

1.1 Research Target

With this contribution we aim at finding suitable methods to visualize agricultural
data with a high degree of precision and generality. We present different data sets
which shall be visualized. We present experimental resultson real and recent agri-
cultural data. Our work helps in visualizing and understanding the available data,
which is an important step in data mining.

1.2 Article Structure

This article concentrates on the third and fourth step of thedata flow model from
Figure 1, namely building and evaluating different models.Here, the modeling will
clearly be aimed at visualizing the data. Nevertheless, details which are necessary
for the understanding and judgment of the modeling stage will not be omitted. This
article starts with a description of the data and (partly) how they have been acquired
in Section 2. After the data have briefly been shown, the existing modeling approach
and the basics of self-organizing maps will be shown in Section 3. Section 4 is at the
core of this article: the different data sets will be visualized and conclusions will be
drawn from the visualisations – and compared with farmers’ experience. Section 5
presents a short conclusion and lays out our future work.
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Fig. 1: Data mining for agriculture data

2 Data Description

The data available in this work have been obtained in the year2006 on a field near
Köthen, north of Halle, Germany1 All information available for these 72- and 32-
hectare fields2 was interpolated using kriging [12] to a grid with 10 by 10 meters
grid cell sizes. Each grid cell represents a record with all available information.
During the growing season of 2006, the field was subdivided into different strips,
where various fertilization strategies were carried out. For an example of various
managing strategies, see e.g. [11], which also shows the economic potential of PA
technologies quite clearly. The field grew winter wheat, where nitrogen fertilizer
was distributed over three application times during the growing season.

Overall, there are seven input attributes – accompanied by the yield in 2006 as
the target attribute. Those attributes will be described inthe following. In total, for
the smaller field (F131) there are 2278 records, for the larger field (F330) there are
4578 records, thereof none with missing values and none withoutliers.

2.1 Nitrogen Fertilizer –N1, N2, N3

The amount of fertilizer applied to each subfield can be easily measured. It is applied
at three points in time into the vegetation period.

2.2 Vegetation –REIP32, REIP49

The red edge inflection point(REIP) is a first derivative value calculated along the
red edge region of the spectrum, which is situated from 680 to750nm. Dedicated
REIP sensors are used in-season to measure the plants’ reflection in this spectral
band. Since the plants’ chlorophyll content is assumed to highly correlate with the

1 GPS: Latitude N 51 40.430, Longitude E 11 58.110
2 We will call themF330andF131, respectively



Georg Ruß, Rudolf Kruse, Martin Schneider, Peter Wagner

nitrogen availability (see, e.g. [6]), the REIP value allows for deducing the plants’
state of nutrition and thus, the previous crop growth. For further information on
certain types of sensors and a more detailed introduction, see [15] or [5]. Plants that
have less chlorophyll will show a lower REIP value as the red edge moves toward
the blue part of the spectrum. On the other hand, plants with more chlorophyll will
have higher REIP values as the red edge moves toward the higher wavelengths. For
the range of REIP values encountered in the available data, see Tables 1 and 2.
The numbers in theREIP32 andREIP49 names refer to the growing stage of winter
wheat.

2.3 Electric Conductivity –EM38

A non-invasive method to discover and map a field’s heterogeneity is to measure the
soil’s conductivity. Commercial sensors such as the EM-383 are designed for agri-
cultural use and can measure small-scale conductivity to a depth of about 1.5 me-
tres. There is no possibility of interpreting these sensor data directly in terms of
its meaningfulness as yield-influencing factor. But in connection with other site-
specific data, as explained in the rest of this section, therecould be coherences. For
the range of EM values encountered in the available data, seeTables 1 and 2.

2.4 YIELD 2005/2006

Here, yield is measured in metric tons per hectare (t
ha), where one metric ton equals

roughly 2204 pounds and one hectare roughly equals 2.47 acres. For the yield ranges
for the respective years and sites, see Tables 1 and 2. It should be noted that for both
data sets the yield was reduced significantly due to bad weather conditions (lack of
rain) during the growing season 2006.

2.5 Data Overview

In this work, we evaluate data sets from two different fields.A brief summary of
the available data attributes for both data sets is given in Tables 1 and 2. On each
field, different fertilization strategies have been used asdescribed in Section 2.6.
For each field, one data set will contain all records, thus containing all the different
fertilization strategies. Another data set for each field will be a subset of the first
that only contains those data records where the MLP has been used, respectively.
Table 3 serves as a short overview about the resulting four different data sets.

3 trademark of Geonics Ltd, Ontario, Canada
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Table 1: Data overview, F131

F131 min max mean std Description
YIELD 05 1.69 10.68 5.69 0.93 yield in 2005

EM38 51.5884.0862.21 8.60 electrical conductivity of soil
N1 47.70 70 64.32 6.02 amount of nitrogen fertilizer applied at the first date
N2 14.80 100 51.7115.67amount of nitrogen fertilizer applied at the second date
N3 0 70 39.6513.73amount of nitrogen fertilizer applied at the third date

REIP32 719.6724.4722.6 0.69 red edge inflection point vegetation index
REIP49 722.3727.9725.8 0.95 red edge inflection point vegetation index

YIELD 06 1.54 8.83 5.21 0.88 yield in 2006

Table 2: Data overview, F330

F330 min max mean std Description
YIELD 05 4.64 14.1210.62 0.97 yield in 2005

EM38 25.0849.4833.69 2.94 electrical conductivity of soil
N1 24.0 70 59.4814.42amount of nitrogen fertilizer applied at the first date
N2 3.0 100 56.3813.35amount of nitrogen fertilizer applied at the second date
N3 0.3 91.6 50.0512.12amount of nitrogen fertilizer applied at the third date

REIP32 719.2724.4721.5 1.03 red edge inflection point vegetation index
REIP49 723.0728.5726.9 0.82 red edge inflection point vegetation index

YIELD 06 1.84 8.27 5.90 0.54 yield in 2006

Table 3: Overview on available data sets for specific fertilization strategies for different fields

F131-all YIELD 05, EM38, N1, REIP32, N2, REIP49, N3, YIELD 06, fert. strategy
F131-netsubset of F131-all where fertilization strategy isneural network

F330-all YIELD 05, EM38, N1, REIP32, N2, REIP49, N3, YIELD 06, fert. strategy
F330-netsubset of F330-all where fertilization strategy isneural network

2.6 Fertilization Strategies

There were three different strategies that have been used toguide the nitrogen fer-
tilization of the fields. F131 contains data resulting from two strategies (F, N) and
F330 contains data from three strategies (F, N, S). The threestrategies are as follows:

F – uniform distribution of fertilizer according to long-term experience of the
farmer

N – fertilizer distribution was guided by an economic optimization with a multi-
layer perceptron model; the model was trained using the above data with the
current year’s yield as target variable that is to be predicted

S – based on a special nitrogen sensor – the sensor’s measurements are used to
determine the amount of nitrogen fertilizer that is to be applied.
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2.7 Points of Interest

From the agricultural perspective, it is interesting to seehow much the influenca-
ble factor “fertilization” really influences the yield in the current site-year. Further-
more, there may be additional location factors that correlate directly or indirectly
with yield and which can not be discovered using regression or correlation analy-
sis techniques like principal component analysis. Self-organizing maps (SOMs), on
the other hand, provide a relatively self-explanatory way to analyse those yield data
visually, find correlations and, eventually, make predictions for current year’s yield
from past data. The overall research target is to find those indicators of a field’s het-
erogeneity which are optimal for prediction. In this paper we will present advances
in visualizing the available data with SOMs which helps in understanding and will
ultimately lead to new heterogeneity indicators. The following section will briefly
summarize an appropriate technique to model the data that wehave presented in ear-
lier work. Afterwards, SOMs will be outlined briefly, with the main focus on data
visualization.

3 Using Multi-Layer Perceptrons and Self-organizing Maps
Approach

This section deals with the basic techniques that we used to model and visualize
the agricultural yield data. For modeling, we have used Multi-Layer Perceptrons, as
discussed in [10]. To visualize the data we will use Self-Organizing Maps (SOMs).
Therefore, SOMs will comprise the main part of this section.

3.1 Multi-Layer Perceptrons for Modeling

In recent years, we have modeled the available data using a multi-layer perceptron
(MLP). To gain more insights into what the MLP has learned, inthis paper we will
use self-organizing maps to try to better understand the data and the modeling pro-
cess that underlies MLPs. In [7], neural networks have been used for optimization
of fertilizer usage for wheat, in [13] the process has been carried out for corn. In
[8] we could show that MLPs can be used for predicting currentyear’s yield. For
a detailed discussion of the used MLP structure and parameters, we refer to [9].
We basically used a feedforward-backpropagation multi-layer perceptron with two
hidden layers. The network parameters such as the hidden layer sizes were deter-
mined experimentally. A prediction accuracy of between 0.45 and 0.55 metric tons
per hectare (100× 100 metres) at an average yield of 9.14 t

ha could be achieved by
using this modeling technique.
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3.2 Self-Organizing Maps for Visualization

Our approach of using SOMs is motivated by the need to better understand the
available yield data and extract knowledge from those data.SOMs have been shown
to be a practical tool for data visualization [1]. Moreover,SOMs can be used for
prediction and correlation analysis, again, mostly visually [3]. As such, the main
focus in explaining Self-Organizing Maps in the following will be on the visual
analysis of the resulting maps.

Self-Organizing Maps have been invented in the 1990s by Teuvo Kohonen [4].
They are based on unsupervised competitive learning, whichcauses the training to
be entirely data-driven and the neurons on the map to competewith each other.
Supervised algorithms like MLPs or Support Vector Machinesrequire the target
attribute’s values for each data vector to be known in advance whereas SOMs do
not have this limitation.

Grid and Neigborhood: An important feature of SOMs that distinguishes them
from Vector Quantisation techniques is that the neurons areorganized on a regular
grid. During training, not only the Best-Matching Neuron, but also its topological
neighbors are updated. With those prerequisites, SOMs can be seen as a scaling
method which projects data from a high-dimensional input space onto a typically
two-dimensional map, preserving similarities between input vectors in the projec-
tion.

Structure: A SOM is formed of neurons located on a usually two-dimensional
grid having a rectangular or hexagonal topology. Each neuron of the map is repre-
sented by a weight vectormi = [mi1, · · · ,min]

T , wheren is equal to the respective
dimension of the input vectors. The map’s neurons are connected to adjacent neu-
rons by a neighborhood relationship, superimposing the structure of the map. The
number of neurons on the map determines the granularity of the resulting mapping,
which, in turn, influences the accuracy and generalization capabilities of the SOM.

Training: After an initialization phase, the training phase begins. One sample
vectorx from the input data set is chosen and the similarity between the sample and
each of the neurons on the map is calculated. The Best-Matching Unit (BMU) is
determined: its weight vector is most similar tox. The weight vector of the BMU
and its topological neighbors are updated, i.e. moved closer to the input vector.
The training is usually carried out in two phases: the first phase has relatively large
learning rate and neighborhood radius values to help the mapadapt towards new
data. The second phase features smaller values for the learning rate and the radius
to fine-tune the map.

Visualization: The reference vectors of the SOM can be visualized via a com-
ponent plane visualization. The trained SOM can be seen as multi-tiered with the
components of the vectors describing horizontal layers themselves and the reference
vectors being orthogonal to these layers. From the component planes the distribu-
tion of the component values and possible correlations between components can be
obtained easily. The visualization of the component planesis the main feature of the
SOMs that will be utilized in the following section.
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In this work, we have used the Matlab SOM toolbox authored by [14] with the
default presets and heuristics for determining map sizes and learning parameters.

4 Experimental Results

This section will present some of the experimental results that we have obtained
using SOMs on agricultural data. The first two parts will dealwith the analysis of
the maps generated from the complete data set (containing different fertilization
strategies). The subsequent two parts will deal with those subsets of the data where
a MLP has been used for yield prediction and optimization. The data sets have been
described in Section 2, an overview has been given in Table 3.

4.1 Results for F131-all

The full F131-all dataset consists of theF andN fertilization strategies where each
data record is labeled accordingly. After training the SOM using the preset heuris-
tics from the toolbox [14], the labeled map that results is shown in Figure 2a. The
corresponding U-Matrix that confirms the clear separability of the two fertilization
strategies is shown in Figure 2b. In Figures 3a to 3c the amount of fertilizer for the
three different fertilization times is projected onto the same SOM. On those three
maps it can also be seen that the different strategies are clearly separated on the
maps. Another result can be seen in Figures 3d and 4b. As should be expected, the
REIP49 value (which is an indicator of current vegetation on the field) correlates
with theYIELD 06 attribute. This hypothesis that we obtained from simple visual in-
spection of the SOM’s component planes can be substantiatedby the corresponding
scatter plot in Figure 4c.

4.2 Results for F330-all

In contrast to the F131 dataset, F330 contains three different fertilization strategies.
The “farm” strategy (labeledF), the “neural network (MLP)” strategy (labeledN)
and the “sensor” strategy (labeledS) In Figure 5a it can be seen that, as in the
preceding section, theN strategy is separable from the other two variants. However,
the F and S strategies are not clearly separable. The U-matrix in Figure 5b also
represents this behaviour. When looking at the projected values ofN1, N2 andN3
in the component planes in Figures 6a to 6c, the differences between theN andF
or Sstrategies are again clearly visible. There is, however, nosuch clear connection
between theREIP49 (Figure 6d) andYIELD 06 (Figure 7b) parameters as in the
preceding section. This can also be seen from the scatter plot in Figure 7c. This
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(a) Labels (b) U-Matrix

Fig. 2: F131-all, Labels and U-Matrix

(a) N1 (b) N2 (c) N3 (d) REIP49

Fig. 3: F131-all:N1, N2, N3, REIP49

(a) YIELD 05 (b) YIELD 06 (c) Scatter plot for F131-all,
REIP49 vs.YIELD 06

Fig. 4: F131-all:YIELD 05, YIELD 06, scatter plot
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might be due to the fact that the overall yield was significantly reduced by bad
weather conditions in 2006. Nevertheless, there is a certain similarity between the
relative yields that can be easily obtained by comparingYIELD 05 to YIELD 06 in
Figures 7a and 7b.

(a) Labels (b) U-Matrix

Fig. 5: F330-all, Labels and U-Matrix

(a) N1 (b) N2 (c) N3 (d) REIP49

Fig. 6: F330-all:N1, N2, N3, REIP49

(a) YIELD 05 (b) YIELD 06 (c) Scatter plot for F330-all,
REIP49 vs.YIELD 06

Fig. 7: F330-all:YIELD 05, YIELD 06, scatter plot
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4.3 Results for F131-net

F131-net represents a subset of F131-all: it contains thosedata records from F131-
all that were labeledN, i.e. in those field parts the neural network predictor was
used for fertilizer optimization. Figures 8a and 8b seem to convey a connection:
the MLP has learned that whereYIELD 05 was high (lower left of map), there is
less need ofN1 fertilizer whereas the rest of the field needs a high amount.For N2,
another network is trained with more input, nowN2 andYIELD 05 seem to correlate
(Figures 8a and 8c).

Furthermore, it is expected thatREIP49 andYIELD 06 correlate, as can be seen
from Figures 9a and 9b. Furthermore, even theEM38 value for electromagnetic
conductivity correlates with the said attributes, see Figure 9c. Additionally, the cor-
responding scatter plot in Figure 9d shows a separation between clusters of low
EM38/YIELD 06 values and highEM38/YIELD 06 values.

(a) YIELD 05 (b) N1 (c) N2 (d) Scatter plot for F131-net,
REIP49 vs.YIELD 06

Fig. 8: F131-net:YIELD 05, N1, N2, scatter plot

(a) REIP49 (b) YIELD 06 (c) EM38 (d) Scatter plot for F131-net,EM38
vs. YIELD 06

Fig. 9: F131-net:REIP49, YIELD 06, EM38, scatter plot
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4.4 Results for F330-net

As in the preceding section, F330-net represents a subset ofF330-all: it contains
those data records from F330-all that were labeledN, i.e. in those field parts the
MLP predictor was used for fertilizer optimization. Again,Figures 10a and 10b
seem to convey a connection: the MLP has learned that whereYIELD 05 was high
(lower left of map), there is less need ofN1 fertilizer whereas the rest of the field
needs a high amount. ForN2, another network is trained with more input, nowN2
andYIELD 05 seem to correlate (Figures 10a and 10c), although the correlation is not
as clear as with the F131-net dataset. Furthermore, it is expected thatREIP49 and
YIELD 06 correlate, as can be seen from Figures 9a,9b and 8d. Furthermore, even
theEM38 value for electromagnetic conductivity correlates withthe said attributes,
see Figure 9c. Additionally, the corresponding scatter plot in Figure 9d shows a
separation between clusters of lowEM38/YIELD 06 values and highEM38/YIELD 06
values.

From the agricultural point of view, the F330 field is quite different from the one
where the F131 data set was obtained, they are located 5.7km away from each other.
This difference can be clearly shown on the SOMs. So, even though the fields are
quite close, it is definitely necessary to have different small-scale and fine-granular
fertilization and farming strategies.

5 Conclusion

In this paper we have presented a novel application of self-organizing maps by using
them on agricultural yield data. After a thorough description and statistical analy-
sis of the available data sets, we briefly outlined the advantages of self-organizing
maps in data visualization. A hypothesis on the differencesbetween two fields could
clearly be confirmed by using SOMs. We presented further results, which are very
promising and show that correlations and interdependencies in the data sets can eas-
ily be assessed by visual inspection of the resulting component planes of the self-
organizing map. Those results are of immediate practical usefulness and demon-
strate the advantage of using data mining techniques in agriculture.

5.1 Future Work

The presented work is part of a larger data mining process. Inearlier work, we
have presented modeling ideas to represent the agriculturedata and use them for
prediction and optimization [10]. This work presented ideas on using advanced vi-
sualization techniques with the available, real data. Future work will certainly cover
further optimization of the prediction capabilities and evaluating different model-
ing techniques as well as working with additional data such as low-altitude flight
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(a) YIELD 05 (b) N1 (c) N2 (d) Scatter plot for F330-net,
REIP49 vs.YIELD 06

Fig. 10: F330-net:YIELD 05, N1, N2, scatter plot

(a) REIP49 (b) YIELD 06 (c) EM38 (d) Scatter plot for F330-net,
EM38 vs.YIELD 06

Fig. 11: F330-net:REIP49, YIELD 06, EM38, scatter plot

sensors [2]. As of now, those additional sensor data are becoming available for data
mining – this will eventually lead to better heterogeneity indicators by refining the
available models.

Acknowledgements The figures in this work were generated using Matlab R2007b with the SOM
toolbox downloadable fromhttp://www.cis.hut.fi/projects/somtoolbox/. The
Matlab script that generated the figures can be obtained from the first author on request.
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10. Georg Ruß, Rudolf Kruse, Peter Wagner, and Martin Schneider. Data mining with neural
networks for wheat yield prediction. InAdvances in Data Mining. Springer Verlag, 2008. (to
appear).

11. M. Schneider and P. Wagner. Prerequisites for the adoption of new technologies - the example
of precision agriculture. InAgricultural Engineering for a Better World, Düsseldorf, 2006.
VDI Verlag GmbH.

12. Michael L. Stein.Interpolation of Spatial Data : Some Theory for Kriging (Springer Series in
Statistics). Springer, June 1999.

13. Y. Uno, S. O. Prasher, R. Lacroix, P. K. Goel, Y. Karimi, A. Viau, and R. M. Patel. Artifi-
cial neural networks to predict corn yield from compact airborne spectrographic imager data.
Computers and Electronics in Agriculture, 47(2):149–161, May 2005.

14. J. Vesanto, J. Himberg, E. Alhoniemi, and J. Parhankangas. Self-organizing map in matlab: the
SOM toolbox. InProceedings of the Matlab DSP Conference, pages 35–40, Espoo, Finland,
November 1999.

15. Georg Weigert.Data Mining und Wissensentdeckung im Precision Farming - Entwicklung
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